Основы алгебры Примеры

Этап 1
Найдем асимптоты.
Нажмите для увеличения количества этапов...
Этап 1.1
Вертикальные асимптоты функции находятся в точках , где  — целое число. Используя основной период для , найдем вертикальные асимптоты для . Положив аргумент тангенса, , равным в выражении , найдем положение вертикальной асимптоты для .
Этап 1.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Добавим к обеим частям уравнения.
Этап 1.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 1.2.2.1
Разделим каждый член на .
Этап 1.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.2.2.2.1.1
Сократим общий множитель.
Этап 1.2.2.2.1.2
Разделим на .
Этап 1.2.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.2.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.2.2.3.1.1
Умножим числитель на величину, обратную знаменателю.
Этап 1.2.2.3.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 1.2.2.3.1.2.1
Умножим на .
Этап 1.2.2.3.1.2.2
Умножим на .
Этап 1.2.2.3.1.3
Разделим на .
Этап 1.3
Приравняем аргумент функции тангенса к .
Этап 1.4
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.4.1
Добавим к обеим частям уравнения.
Этап 1.4.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 1.4.2.1
Разделим каждый член на .
Этап 1.4.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.4.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.4.2.2.1.1
Сократим общий множитель.
Этап 1.4.2.2.1.2
Разделим на .
Этап 1.4.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.4.2.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.4.2.3.1.1
Умножим числитель на величину, обратную знаменателю.
Этап 1.4.2.3.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 1.4.2.3.1.2.1
Умножим на .
Этап 1.4.2.3.1.2.2
Умножим на .
Этап 1.4.2.3.1.3
Разделим на .
Этап 1.5
Основной период находится на промежутке , где и являются вертикальными асимптотами.
Этап 1.6
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 1.7
Вертикальные асимптоты находятся в точках , и в каждой точке , где  ― целое число.
Этап 1.8
У тангенса есть только вертикальные асимптоты.
Нет горизонтальных асимптот
Нет наклонных асимптот
Вертикальные асимптоты: , где  — целое число
Нет горизонтальных асимптот
Нет наклонных асимптот
Вертикальные асимптоты: , где  — целое число
Этап 2
Применим форму , чтобы найти переменные, используемые для вычисления амплитуды, периода, сдвига фазы и смещения по вертикали.
Этап 3
Поскольку график функции не имеет максимального или минимального значения, его амплитуда не может быть определена.
Амплитуда: нет
Этап 4
Найдем период .
Нажмите для увеличения количества этапов...
Этап 4.1
Период функции можно вычислить по формуле .
Этап 4.2
Заменим на в формуле периода.
Этап 4.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 5
Найдем сдвиг фазы, используя формулу .
Нажмите для увеличения количества этапов...
Этап 5.1
Сдвиг фазы функции можно вычислить по формуле .
Сдвиг фазы:
Этап 5.2
Заменим величины и в уравнении на сдвиг фазы.
Сдвиг фазы:
Этап 5.3
Разделим на .
Сдвиг фазы:
Сдвиг фазы:
Этап 6
Перечислим свойства тригонометрической функции.
Амплитуда: нет
Период:
Сдвиг фазы: ( вправо)
Смещение по вертикали: нет
Этап 7
График тригонометрической функции можно построить, используя амплитуду, период, сдвиг фазы, смещение по вертикали и точки.
Вертикальные асимптоты: , где  — целое число
Амплитуда: нет
Период:
Сдвиг фазы: ( вправо)
Смещение по вертикали: нет
Этап 8