Введите задачу...
Основы алгебры Примеры
Этап 1
Этап 1.1
Чтобы найти координату вершины, зададим абсолютное значение равным . В данном случае .
Этап 1.2
Решим уравнение , чтобы найти координату вершины графика абсолютного значения.
Этап 1.2.1
Приравняем числитель к нулю.
Этап 1.2.2
Добавим к обеим частям уравнения.
Этап 1.3
Заменим в этом выражении переменную на .
Этап 1.4
Упростим .
Этап 1.4.1
Сократим общий множитель и .
Этап 1.4.1.1
Вынесем множитель из .
Этап 1.4.1.2
Вынесем множитель из .
Этап 1.4.1.3
Вынесем множитель из .
Этап 1.4.1.4
Сократим общие множители.
Этап 1.4.1.4.1
Вынесем множитель из .
Этап 1.4.1.4.2
Вынесем множитель из .
Этап 1.4.1.4.3
Вынесем множитель из .
Этап 1.4.1.4.4
Сократим общий множитель.
Этап 1.4.1.4.5
Перепишем это выражение.
Этап 1.4.2
Упростим выражение.
Этап 1.4.2.1
Вычтем из .
Этап 1.4.2.2
Добавим и .
Этап 1.4.2.3
Разделим на .
Этап 1.4.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 1.5
Вершина графика абсолютного значения находится в точке .
Этап 2
Этап 2.1
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 2.2
Вычтем из обеих частей уравнения.
Этап 2.3
Область определения ― это все значения , при которых выражение определено.
Интервальное представление:
Обозначение построения множества:
Интервальное представление:
Обозначение построения множества:
Этап 3
Этап 3.1
Подставим значение в . В данном случае получится точка .
Этап 3.1.1
Заменим в этом выражении переменную на .
Этап 3.1.2
Упростим результат.
Этап 3.1.2.1
Сократим общий множитель и .
Этап 3.1.2.1.1
Вынесем множитель из .
Этап 3.1.2.1.2
Вынесем множитель из .
Этап 3.1.2.1.3
Вынесем множитель из .
Этап 3.1.2.1.4
Сократим общие множители.
Этап 3.1.2.1.4.1
Вынесем множитель из .
Этап 3.1.2.1.4.2
Вынесем множитель из .
Этап 3.1.2.1.4.3
Вынесем множитель из .
Этап 3.1.2.1.4.4
Сократим общий множитель.
Этап 3.1.2.1.4.5
Перепишем это выражение.
Этап 3.1.2.2
Сократим общий множитель и .
Этап 3.1.2.2.1
Перепишем в виде .
Этап 3.1.2.2.2
Перепишем в виде .
Этап 3.1.2.2.3
Вынесем множитель из .
Этап 3.1.2.2.4
Сократим общий множитель.
Этап 3.1.2.2.5
Разделим на .
Этап 3.1.2.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 3.1.2.4
Окончательный ответ: .
Этап 3.2
Подставим значение в . В данном случае получится точка .
Этап 3.2.1
Заменим в этом выражении переменную на .
Этап 3.2.2
Упростим результат.
Этап 3.2.2.1
Вычтем из .
Этап 3.2.2.2
Добавим и .
Этап 3.2.2.3
Вынесем знак минуса перед дробью.
Этап 3.2.2.4
приблизительно равно . Это отрицательное число, поэтому обратим знак и вычтем абсолютное значение.
Этап 3.2.2.5
Окончательный ответ: .
Этап 3.3
Подставим значение в . В данном случае получится точка .
Этап 3.3.1
Заменим в этом выражении переменную на .
Этап 3.3.2
Упростим результат.
Этап 3.3.2.1
Вычтем из .
Этап 3.3.2.2
Добавим и .
Этап 3.3.2.3
приблизительно равно . Это положительное число, поэтому вычтем абсолютное значение.
Этап 3.3.2.4
Окончательный ответ: .
Этап 3.4
Подставим значение в . В данном случае получится точка .
Этап 3.4.1
Заменим в этом выражении переменную на .
Этап 3.4.2
Упростим результат.
Этап 3.4.2.1
Сократим общий множитель и .
Этап 3.4.2.1.1
Вынесем множитель из .
Этап 3.4.2.1.2
Вынесем множитель из .
Этап 3.4.2.1.3
Вынесем множитель из .
Этап 3.4.2.1.4
Сократим общие множители.
Этап 3.4.2.1.4.1
Вынесем множитель из .
Этап 3.4.2.1.4.2
Вынесем множитель из .
Этап 3.4.2.1.4.3
Вынесем множитель из .
Этап 3.4.2.1.4.4
Сократим общий множитель.
Этап 3.4.2.1.4.5
Перепишем это выражение.
Этап 3.4.2.2
Упростим путем сложения и вычитания.
Этап 3.4.2.2.1
Вычтем из .
Этап 3.4.2.2.2
Добавим и .
Этап 3.4.2.3
приблизительно равно . Это положительное число, поэтому вычтем абсолютное значение.
Этап 3.4.2.4
Окончательный ответ: .
Этап 3.5
График функции абсолютного значения можно построить по точкам около вершины .
Этап 4