Основы алгебры Примеры

Этап 1
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.1
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Вычтем из обеих частей уравнения.
Этап 1.1.2
Добавим к обеим частям уравнения.
Этап 1.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 1.2.1
Разделим каждый член на .
Этап 1.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.2.2.1.1
Сократим общий множитель.
Этап 1.2.2.1.2
Разделим на .
Этап 1.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.2.3.1.1
Деление двух отрицательных значений дает положительное значение.
Этап 1.2.3.1.2
Разделим на .
Этап 2
Запишем в виде уравнения с угловым коэффициентом.
Нажмите для увеличения количества этапов...
Этап 2.1
Уравнение с угловым коэффициентом имеет вид , где  — угловой коэффициент, а  — точка пересечения с осью y.
Этап 2.2
Изменим порядок членов.
Этап 3
Используем уравнение с угловым коэффициентом, чтобы найти угловой коэффициент и точку пересечения с осью y.
Нажмите для увеличения количества этапов...
Этап 3.1
Найдем значения и , используя форму .
Этап 3.2
Угловой коэффициент прямой ― это значение , а точка пересечения с осью y ― значение .
Угловой коэффициент:
точка пересечения с осью y:
Угловой коэффициент:
точка пересечения с осью y:
Этап 4
Любую прямую можно построить с помощью двух точек. Выберем два значения и подставим их в уравнение, чтобы найти соответствующие значения .
Нажмите для увеличения количества этапов...
Этап 4.1
Изменим порядок членов.
Этап 4.2
Составим таблицу из значение и .
Этап 5
Построим график прямой, используя угловой коэффициент и точку пересечения с осью y или эти точки.
Угловой коэффициент:
точка пересечения с осью y:
Этап 6