Основы алгебры Примеры

График ((x^2-25)/(x^2-16))/((2x+10)/(x^2-4x*(2x+8)/(x^2-5x)))
Этап 1
Найдем, где выражение не определено.
Этап 2
Поскольку как слева, а как справа, то  — вертикальная асимптота.
Этап 3
Поскольку как слева, а как справа, то  — вертикальная асимптота.
Этап 4
Перечислим все вертикальные асимптоты:
Этап 5
Рассмотрим рациональную функцию , где  — степень числителя, а  — степень знаменателя.
1. Если , тогда ось x, , служит горизонтальной асимптотой.
2. Если , тогда горизонтальной асимптотой служит линия .
3. Если , тогда нет горизонтальной асимптоты (есть наклонная асимптота).
Этап 6
Найдем и .
Этап 7
Поскольку , горизонтальная асимптота отсутствует.
Нет горизонтальных асимптот
Этап 8
Найдем наклонную асимптоту, используя деление многочленов.
Нажмите для увеличения количества этапов...
Этап 8.1
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 8.1.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 8.1.1.1
Вынесем множитель из .
Этап 8.1.1.2
Вынесем множитель из .
Этап 8.1.1.3
Вынесем множитель из .
Этап 8.1.2
Перепишем в виде .
Этап 8.1.3
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 8.2
Развернем .
Нажмите для увеличения количества этапов...
Этап 8.2.1
Применим свойство дистрибутивности.
Этап 8.2.2
Применим свойство дистрибутивности.
Этап 8.2.3
Применим свойство дистрибутивности.
Этап 8.2.4
Применим свойство дистрибутивности.
Этап 8.2.5
Перенесем .
Этап 8.2.6
Возведем в степень .
Этап 8.2.7
Возведем в степень .
Этап 8.2.8
Применим правило степени для объединения показателей.
Этап 8.2.9
Добавим и .
Этап 8.2.10
Умножим на .
Этап 8.2.11
Умножим на .
Этап 8.2.12
Умножим на .
Этап 8.2.13
Умножим на .
Этап 8.2.14
Добавим и .
Этап 8.2.15
Вычтем из .
Этап 8.3
Подготовим многочлены к делению. Если слагаемые представляют не все экспоненты, добавим отсутствующий член со значением .
+----
Этап 8.4
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
+----
Этап 8.5
Умножим новое частное на делитель.
+----
++-
Этап 8.6
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
+----
--+
Этап 8.7
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
+----
--+
-+
Этап 8.8
Вынесем следующие члены из исходного делимого в текущее делимое.
+----
--+
-+-
Этап 8.9
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
-
+----
--+
-+-
Этап 8.10
Умножим новое частное на делитель.
-
+----
--+
-+-
-++
Этап 8.11
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
-
+----
--+
-+-
+--
Этап 8.12
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
-
+----
--+
-+-
+--
+-
Этап 8.13
Окончательный ответ: неполное частное плюс остаток, деленный на делитель.
Этап 8.14
Наклонная асимптота ― это полиномиальная часть результата деления в столбик.
Этап 9
Это множество всех асимптот.
Вертикальные асимптоты:
Нет горизонтальных асимптот
Наклонные асимптоты:
Этап 10