Введите задачу...
Основы алгебры Примеры
Этап 1
Этап 1.1
Чтобы убедиться в соответствии таблицы правилу функции, проверим, удовлетворяют ли значения линейной форме .
Этап 1.2
На основе этой таблицы создадим набор уравнений, для которого .
Этап 1.3
Вычислим значения и .
Этап 1.3.1
Решим относительно в .
Этап 1.3.1.1
Перепишем уравнение в виде .
Этап 1.3.1.2
Перенесем влево от .
Этап 1.3.1.3
Вычтем из обеих частей уравнения.
Этап 1.3.2
Заменим все вхождения на во всех уравнениях.
Этап 1.3.2.1
Заменим все вхождения в на .
Этап 1.3.2.2
Упростим .
Этап 1.3.2.2.1
Упростим левую часть.
Этап 1.3.2.2.1.1
Избавимся от скобок.
Этап 1.3.2.2.2
Упростим правую часть.
Этап 1.3.2.2.2.1
Упростим .
Этап 1.3.2.2.2.1.1
Перенесем влево от .
Этап 1.3.2.2.2.1.2
Вычтем из .
Этап 1.3.2.3
Заменим все вхождения в на .
Этап 1.3.2.4
Упростим .
Этап 1.3.2.4.1
Упростим левую часть.
Этап 1.3.2.4.1.1
Избавимся от скобок.
Этап 1.3.2.4.2
Упростим правую часть.
Этап 1.3.2.4.2.1
Упростим .
Этап 1.3.2.4.2.1.1
Перенесем влево от .
Этап 1.3.2.4.2.1.2
Вычтем из .
Этап 1.3.3
Решим относительно в .
Этап 1.3.3.1
Перепишем уравнение в виде .
Этап 1.3.3.2
Перенесем все члены без в правую часть уравнения.
Этап 1.3.3.2.1
Вычтем из обеих частей уравнения.
Этап 1.3.3.2.2
Вычтем из .
Этап 1.3.3.3
Разделим каждый член на и упростим.
Этап 1.3.3.3.1
Разделим каждый член на .
Этап 1.3.3.3.2
Упростим левую часть.
Этап 1.3.3.3.2.1
Сократим общий множитель .
Этап 1.3.3.3.2.1.1
Сократим общий множитель.
Этап 1.3.3.3.2.1.2
Разделим на .
Этап 1.3.3.3.3
Упростим правую часть.
Этап 1.3.3.3.3.1
Сократим общий множитель и .
Этап 1.3.3.3.3.1.1
Вынесем множитель из .
Этап 1.3.3.3.3.1.2
Сократим общие множители.
Этап 1.3.3.3.3.1.2.1
Вынесем множитель из .
Этап 1.3.3.3.3.1.2.2
Сократим общий множитель.
Этап 1.3.3.3.3.1.2.3
Перепишем это выражение.
Этап 1.3.4
Заменим все вхождения на во всех уравнениях.
Этап 1.3.4.1
Заменим все вхождения в на .
Этап 1.3.4.2
Упростим правую часть.
Этап 1.3.4.2.1
Упростим .
Этап 1.3.4.2.1.1
Сократим общий множитель .
Этап 1.3.4.2.1.1.1
Сократим общий множитель.
Этап 1.3.4.2.1.1.2
Перепишем это выражение.
Этап 1.3.4.2.1.2
Добавим и .
Этап 1.3.4.3
Заменим все вхождения в на .
Этап 1.3.4.4
Упростим правую часть.
Этап 1.3.4.4.1
Упростим .
Этап 1.3.4.4.1.1
Сократим общий множитель .
Этап 1.3.4.4.1.1.1
Вынесем множитель из .
Этап 1.3.4.4.1.1.2
Сократим общий множитель.
Этап 1.3.4.4.1.1.3
Перепишем это выражение.
Этап 1.3.4.4.1.2
Вычтем из .
Этап 1.3.5
Удалим из системы все уравнения, которые всегда верны.
Этап 1.3.6
Перечислим все решения.
Этап 1.4
Вычислим значение , используя каждое значение в отношении и сравнивая это значение с заданным значением в отношении.
Этап 1.4.1
Вычислим значение , когда , и .
Этап 1.4.1.1
Сократим общий множитель .
Этап 1.4.1.1.1
Вынесем множитель из .
Этап 1.4.1.1.2
Сократим общий множитель.
Этап 1.4.1.1.3
Перепишем это выражение.
Этап 1.4.1.2
Добавим и .
Этап 1.4.2
Если для данной таблицы действует линейное правило функции, для соответствующего значения , . Эта проверка дает положительный результат, так как и .
Этап 1.4.3
Вычислим значение , когда , и .
Этап 1.4.3.1
Сократим общий множитель .
Этап 1.4.3.1.1
Вынесем множитель из .
Этап 1.4.3.1.2
Сократим общий множитель.
Этап 1.4.3.1.3
Перепишем это выражение.
Этап 1.4.3.2
Добавим и .
Этап 1.4.4
Если для данной таблицы действует линейное правило функции, для соответствующего значения , . Эта проверка дает положительный результат, так как и .
Этап 1.4.5
Вычислим значение , когда , и .
Этап 1.4.5.1
Сократим общий множитель .
Этап 1.4.5.1.1
Вынесем множитель из .
Этап 1.4.5.1.2
Сократим общий множитель.
Этап 1.4.5.1.3
Перепишем это выражение.
Этап 1.4.5.2
Добавим и .
Этап 1.4.6
Если для данной таблицы действует линейное правило функции, для соответствующего значения , . Эта проверка дает положительный результат, так как и .
Этап 1.4.7
Поскольку для соответствующих значений , эта функция является линейной.
Функция является линейной.
Функция является линейной.
Функция является линейной.
Этап 2
Поскольку все , эта функция является линейной и имеет вид .