Основы алгебры Примеры

Найти правило функции table[[x,y],[1,3],[2,7],[3,11]]
Этап 1
Проверим линейность правила функции.
Нажмите для увеличения количества этапов...
Этап 1.1
Чтобы убедиться в соответствии таблицы правилу функции, проверим, удовлетворяют ли значения линейной форме .
Этап 1.2
На основе этой таблицы создадим набор уравнений, для которого .
Этап 1.3
Вычислим значения и .
Нажмите для увеличения количества этапов...
Этап 1.3.1
Решим относительно в .
Нажмите для увеличения количества этапов...
Этап 1.3.1.1
Перепишем уравнение в виде .
Этап 1.3.1.2
Вычтем из обеих частей уравнения.
Этап 1.3.2
Заменим все вхождения на во всех уравнениях.
Нажмите для увеличения количества этапов...
Этап 1.3.2.1
Заменим все вхождения в на .
Этап 1.3.2.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.3.2.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 1.3.2.2.1.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.3.2.2.1.1.1
Применим свойство дистрибутивности.
Этап 1.3.2.2.1.1.2
Умножим на .
Этап 1.3.2.2.1.1.3
Умножим на .
Этап 1.3.2.2.1.2
Добавим и .
Этап 1.3.2.3
Заменим все вхождения в на .
Этап 1.3.2.4
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.3.2.4.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 1.3.2.4.1.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.3.2.4.1.1.1
Применим свойство дистрибутивности.
Этап 1.3.2.4.1.1.2
Умножим на .
Этап 1.3.2.4.1.1.3
Умножим на .
Этап 1.3.2.4.1.2
Добавим и .
Этап 1.3.3
Решим относительно в .
Нажмите для увеличения количества этапов...
Этап 1.3.3.1
Перепишем уравнение в виде .
Этап 1.3.3.2
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 1.3.3.2.1
Вычтем из обеих частей уравнения.
Этап 1.3.3.2.2
Вычтем из .
Этап 1.3.3.3
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 1.3.3.3.1
Разделим каждый член на .
Этап 1.3.3.3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.3.3.3.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.3.3.3.2.1.1
Сократим общий множитель.
Этап 1.3.3.3.2.1.2
Разделим на .
Этап 1.3.3.3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.3.3.3.3.1
Разделим на .
Этап 1.3.4
Заменим все вхождения на во всех уравнениях.
Нажмите для увеличения количества этапов...
Этап 1.3.4.1
Заменим все вхождения в на .
Этап 1.3.4.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.3.4.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 1.3.4.2.1.1
Умножим на .
Этап 1.3.4.2.1.2
Добавим и .
Этап 1.3.4.3
Заменим все вхождения в на .
Этап 1.3.4.4
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.3.4.4.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 1.3.4.4.1.1
Умножим на .
Этап 1.3.4.4.1.2
Добавим и .
Этап 1.3.5
Удалим из системы все уравнения, которые всегда верны.
Этап 1.3.6
Перечислим все решения.
Этап 1.4
Вычислим значение , используя каждое значение в отношении и сравнивая это значение с заданным значением в отношении.
Нажмите для увеличения количества этапов...
Этап 1.4.1
Вычислим значение , когда , и .
Нажмите для увеличения количества этапов...
Этап 1.4.1.1
Умножим на .
Этап 1.4.1.2
Вычтем из .
Этап 1.4.2
Если для данной таблицы действует линейное правило функции, для соответствующего значения , . Эта проверка дает положительный результат, так как и .
Этап 1.4.3
Вычислим значение , когда , и .
Нажмите для увеличения количества этапов...
Этап 1.4.3.1
Умножим на .
Этап 1.4.3.2
Вычтем из .
Этап 1.4.4
Если для данной таблицы действует линейное правило функции, для соответствующего значения , . Эта проверка дает положительный результат, так как и .
Этап 1.4.5
Вычислим значение , когда , и .
Нажмите для увеличения количества этапов...
Этап 1.4.5.1
Умножим на .
Этап 1.4.5.2
Вычтем из .
Этап 1.4.6
Если для данной таблицы действует линейное правило функции, для соответствующего значения , . Эта проверка дает положительный результат, так как и .
Этап 1.4.7
Поскольку для соответствующих значений , эта функция является линейной.
Функция является линейной.
Функция является линейной.
Функция является линейной.
Этап 2
Поскольку все , эта функция является линейной и имеет вид .