Основы алгебры Примеры

Найти границы корней f(x)=4x(x-7)(x+12)
Этап 1
Проверим старший коэффициент функции. Это число — коэффициент выражения с наибольшей степенью.
Наибольшая степень:
Старший коэффициент:
Этап 2
The leading coefficient needs to be . If it is not, divide the expression by it to make it .
Нажмите для увеличения количества этапов...
Этап 2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.1.1
Сократим общий множитель.
Этап 2.1.2
Разделим на .
Этап 2.2
Применим свойство дистрибутивности.
Этап 2.3
Умножим на .
Этап 2.4
Перенесем влево от .
Этап 2.5
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 2.5.1
Применим свойство дистрибутивности.
Этап 2.5.2
Применим свойство дистрибутивности.
Этап 2.5.3
Применим свойство дистрибутивности.
Этап 2.6
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 2.6.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.6.1.1
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 2.6.1.1.1
Умножим на .
Нажмите для увеличения количества этапов...
Этап 2.6.1.1.1.1
Возведем в степень .
Этап 2.6.1.1.1.2
Применим правило степени для объединения показателей.
Этап 2.6.1.1.2
Добавим и .
Этап 2.6.1.2
Перенесем влево от .
Этап 2.6.1.3
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 2.6.1.3.1
Перенесем .
Этап 2.6.1.3.2
Умножим на .
Этап 2.6.1.4
Умножим на .
Этап 2.6.2
Вычтем из .
Этап 3
Составим список коэффициентов функции, исключив старший коэффициент .
Этап 4
Получатся два варианта границы, и , меньший из которых является ответом. Для вычисления первого варианта границы найдем абсолютное значение наибольшего коэффициента из списка коэффициентов. Затем добавим .
Нажмите для увеличения количества этапов...
Этап 4.1
Расположим члены в порядке возрастания.
Этап 4.2
Максимальное значение ― это наибольшее значение в упорядоченном наборе данных.
Этап 4.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 4.4
Добавим и .
Этап 5
Чтобы рассчитать второй вариант границы, просуммируем абсолютные значения коэффициентов из списка коэффициентов. Если эта сумма больше , используем это число. В противном случае используем .
Нажмите для увеличения количества этапов...
Этап 5.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 5.1.1
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 5.1.2
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 5.2
Добавим и .
Этап 5.3
Расположим члены в порядке возрастания.
Этап 5.4
Максимальное значение ― это наибольшее значение в упорядоченном наборе данных.
Этап 6
Возьмем в качестве границы меньшее из чисел и .
Меньшая граница:
Этап 7
Каждый вещественный корень лежит между и .
и