Введите задачу...
Основы алгебры Примеры
Этап 1
Этап 1.1
Зададим подкоренное выражение в большим или равным , чтобы узнать, где определено данное выражение.
Этап 1.2
Решим относительно .
Этап 1.2.1
Разделим каждый член на и упростим.
Этап 1.2.1.1
Разделим каждый член на .
Этап 1.2.1.2
Упростим левую часть.
Этап 1.2.1.2.1
Сократим общий множитель .
Этап 1.2.1.2.1.1
Сократим общий множитель.
Этап 1.2.1.2.1.2
Разделим на .
Этап 1.2.1.3
Упростим правую часть.
Этап 1.2.1.3.1
Разделим на .
Этап 1.2.2
Добавим к обеим частям неравенства.
Этап 1.3
Область определения ― это все значения , при которых выражение определено.
Интервальное представление:
Обозначение построения множества:
Интервальное представление:
Обозначение построения множества:
Этап 2
Этап 2.1
Заменим в этом выражении переменную на .
Этап 2.2
Упростим результат.
Этап 2.2.1
Вычтем из .
Этап 2.2.2
Умножим на .
Этап 2.2.3
Перепишем в виде .
Этап 2.2.4
Умножим на ноль.
Этап 2.2.4.1
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 2.2.4.2
Умножим на .
Этап 2.2.5
Окончательный ответ: .
Этап 3
Конечная точка подкоренного выражения: .
Этап 4
Этап 4.1
Подставим значение в . В данном случае получится точка .
Этап 4.1.1
Заменим в этом выражении переменную на .
Этап 4.1.2
Упростим результат.
Этап 4.1.2.1
Вычтем из .
Этап 4.1.2.2
Умножим на .
Этап 4.1.2.3
Окончательный ответ: .
Этап 4.2
Подставим значение в . В данном случае получится точка .
Этап 4.2.1
Заменим в этом выражении переменную на .
Этап 4.2.2
Упростим результат.
Этап 4.2.2.1
Вычтем из .
Этап 4.2.2.2
Умножим на .
Этап 4.2.2.3
Перепишем в виде .
Этап 4.2.2.4
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 4.2.2.5
Умножим на .
Этап 4.2.2.6
Окончательный ответ: .
Этап 4.3
График квадратного корня можно построить с помощью точек вокруг вершины .
Этап 5