Введите задачу...
Основы алгебры Примеры
Этап 1
Этап 1.1
Вычтем из обеих частей уравнения.
Этап 1.2
Вычтем из .
Этап 2
Этап 2.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 2.2
НОК единицы и любого выражения есть это выражение.
Этап 3
Этап 3.1
Умножим каждый член на .
Этап 3.2
Упростим левую часть.
Этап 3.2.1
Перепишем, используя свойство коммутативности умножения.
Этап 3.2.2
Сократим общий множитель .
Этап 3.2.2.1
Вынесем множитель из .
Этап 3.2.2.2
Сократим общий множитель.
Этап 3.2.2.3
Перепишем это выражение.
Этап 3.2.3
Сократим общий множитель .
Этап 3.2.3.1
Сократим общий множитель.
Этап 3.2.3.2
Перепишем это выражение.
Этап 3.3
Упростим правую часть.
Этап 3.3.1
Упростим каждый член.
Этап 3.3.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 3.3.1.2
Умножим на , сложив экспоненты.
Этап 3.3.1.2.1
Перенесем .
Этап 3.3.1.2.2
Умножим на .
Этап 3.3.1.3
Умножим на .
Этап 3.3.1.4
Умножим на .
Этап 4
Этап 4.1
Перепишем уравнение в виде .
Этап 4.2
Вычтем из обеих частей уравнения.
Этап 4.3
Используем формулу для нахождения корней квадратного уравнения.
Этап 4.4
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 4.5
Упростим.
Этап 4.5.1
Упростим числитель.
Этап 4.5.1.1
Возведем в степень .
Этап 4.5.1.2
Умножим .
Этап 4.5.1.2.1
Умножим на .
Этап 4.5.1.2.2
Умножим на .
Этап 4.5.1.3
Добавим и .
Этап 4.5.1.4
Перепишем в виде .
Этап 4.5.1.4.1
Вынесем множитель из .
Этап 4.5.1.4.2
Перепишем в виде .
Этап 4.5.1.5
Вынесем члены из-под знака корня.
Этап 4.5.2
Умножим на .
Этап 4.5.3
Упростим .
Этап 4.6
Окончательный ответ является комбинацией обоих решений.
Этап 5
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: