Введите задачу...
Основы алгебры Примеры
Этап 1
Поскольку находится в правой части уравнения, поменяем стороны так, чтобы оно оказалось в левой части уравнения.
Этап 2
Этап 2.1
Перепишем.
Этап 2.2
Упростим путем перемножения.
Этап 2.2.1
Применим свойство дистрибутивности.
Этап 2.2.2
Умножим.
Этап 2.2.2.1
Умножим на .
Этап 2.2.2.2
Умножим на .
Этап 2.2.3
Применим свойство дистрибутивности.
Этап 2.2.4
Упростим выражение.
Этап 2.2.4.1
Перепишем, используя свойство коммутативности умножения.
Этап 2.2.4.2
Умножим на .
Этап 2.3
Упростим каждый член.
Этап 2.3.1
Умножим на , сложив экспоненты.
Этап 2.3.1.1
Перенесем .
Этап 2.3.1.2
Умножим на .
Этап 2.3.2
Умножим на .
Этап 3
Этап 3.1
Упростим каждый член.
Этап 3.1.1
Применим свойство дистрибутивности.
Этап 3.1.2
Умножим на .
Этап 3.1.3
Умножим на .
Этап 3.2
Вычтем из .
Этап 4
Этап 4.1
Добавим к обеим частям уравнения.
Этап 4.2
Добавим и .
Этап 5
Добавим к обеим частям уравнения.
Этап 6
Используем формулу для нахождения корней квадратного уравнения.
Этап 7
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 8
Этап 8.1
Упростим числитель.
Этап 8.1.1
Возведем в степень .
Этап 8.1.2
Умножим .
Этап 8.1.2.1
Умножим на .
Этап 8.1.2.2
Умножим на .
Этап 8.1.3
Вычтем из .
Этап 8.1.4
Перепишем в виде .
Этап 8.1.4.1
Вынесем множитель из .
Этап 8.1.4.2
Перепишем в виде .
Этап 8.1.5
Вынесем члены из-под знака корня.
Этап 8.2
Умножим на .
Этап 8.3
Упростим .
Этап 9
Окончательный ответ является комбинацией обоих решений.
Этап 10
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: