Основы алгебры Примеры

Этап 1
Умножим числитель первой дроби на знаменатель второй дроби. Приравняем результат к произведению знаменателя первой дроби и числителя второй дроби.
Этап 2
Решим уравнение относительно .
Нажмите для увеличения количества этапов...
Этап 2.1
Поскольку находится в правой части уравнения, поменяем стороны так, чтобы оно оказалось в левой части уравнения.
Этап 2.2
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Перепишем.
Этап 2.2.2
Упростим путем добавления нулей.
Этап 2.2.3
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 2.2.3.1
Применим свойство дистрибутивности.
Этап 2.2.3.2
Применим свойство дистрибутивности.
Этап 2.2.3.3
Применим свойство дистрибутивности.
Этап 2.2.4
Упростим члены.
Нажмите для увеличения количества этапов...
Этап 2.2.4.1
Объединим противоположные члены в .
Нажмите для увеличения количества этапов...
Этап 2.2.4.1.1
Изменим порядок множителей в членах и .
Этап 2.2.4.1.2
Вычтем из .
Этап 2.2.4.1.3
Добавим и .
Этап 2.2.4.2
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.2.4.2.1
Умножим на .
Этап 2.2.4.2.2
Умножим на .
Этап 2.3
Перенесем влево от .
Этап 2.4
Вычтем из обеих частей уравнения.
Этап 2.5
Разложим на множители, используя метод группировки.
Нажмите для увеличения количества этапов...
Этап 2.5.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 2.5.2
Запишем разложение на множители, используя данные целые числа.
Этап 2.6
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 2.7
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.7.1
Приравняем к .
Этап 2.7.2
Добавим к обеим частям уравнения.
Этап 2.8
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.8.1
Приравняем к .
Этап 2.8.2
Вычтем из обеих частей уравнения.
Этап 2.9
Окончательным решением являются все значения, при которых верно.