Введите задачу...
Линейная алгебра Примеры
Этап 1
Запишем формулу для построения характеристического уравнения .
Этап 2
Единичная матрица размера представляет собой квадратную матрицу с единицами на главной диагонали и нулями на остальных местах.
Этап 3
Этап 3.1
Подставим вместо .
Этап 3.2
Подставим вместо .
Этап 4
Этап 4.1
Упростим каждый член.
Этап 4.1.1
Умножим на каждый элемент матрицы.
Этап 4.1.2
Упростим каждый элемент матрицы.
Этап 4.1.2.1
Умножим на .
Этап 4.1.2.2
Умножим .
Этап 4.1.2.2.1
Умножим на .
Этап 4.1.2.2.2
Умножим на .
Этап 4.1.2.3
Умножим .
Этап 4.1.2.3.1
Умножим на .
Этап 4.1.2.3.2
Умножим на .
Этап 4.1.2.4
Умножим .
Этап 4.1.2.4.1
Умножим на .
Этап 4.1.2.4.2
Умножим на .
Этап 4.1.2.5
Умножим на .
Этап 4.1.2.6
Умножим .
Этап 4.1.2.6.1
Умножим на .
Этап 4.1.2.6.2
Умножим на .
Этап 4.1.2.7
Умножим .
Этап 4.1.2.7.1
Умножим на .
Этап 4.1.2.7.2
Умножим на .
Этап 4.1.2.8
Умножим .
Этап 4.1.2.8.1
Умножим на .
Этап 4.1.2.8.2
Умножим на .
Этап 4.1.2.9
Умножим на .
Этап 4.2
Сложим соответствующие элементы.
Этап 4.3
Simplify each element.
Этап 4.3.1
Добавим и .
Этап 4.3.2
Добавим и .
Этап 4.3.3
Добавим и .
Этап 4.3.4
Добавим и .
Этап 4.3.5
Добавим и .
Этап 4.3.6
Добавим и .
Этап 5
Этап 5.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Этап 5.1.1
Consider the corresponding sign chart.
Этап 5.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Этап 5.1.3
The minor for is the determinant with row and column deleted.
Этап 5.1.4
Multiply element by its cofactor.
Этап 5.1.5
The minor for is the determinant with row and column deleted.
Этап 5.1.6
Multiply element by its cofactor.
Этап 5.1.7
The minor for is the determinant with row and column deleted.
Этап 5.1.8
Multiply element by its cofactor.
Этап 5.1.9
Add the terms together.
Этап 5.2
Найдем значение .
Этап 5.2.1
Определитель матрицы можно найти, используя формулу .
Этап 5.2.2
Упростим определитель.
Этап 5.2.2.1
Упростим каждый член.
Этап 5.2.2.1.1
Развернем , используя метод «первые-внешние-внутренние-последние».
Этап 5.2.2.1.1.1
Применим свойство дистрибутивности.
Этап 5.2.2.1.1.2
Применим свойство дистрибутивности.
Этап 5.2.2.1.1.3
Применим свойство дистрибутивности.
Этап 5.2.2.1.2
Упростим и объединим подобные члены.
Этап 5.2.2.1.2.1
Упростим каждый член.
Этап 5.2.2.1.2.1.1
Умножим на .
Этап 5.2.2.1.2.1.2
Умножим на .
Этап 5.2.2.1.2.1.3
Умножим на .
Этап 5.2.2.1.2.1.4
Перепишем, используя свойство коммутативности умножения.
Этап 5.2.2.1.2.1.5
Умножим на , сложив экспоненты.
Этап 5.2.2.1.2.1.5.1
Перенесем .
Этап 5.2.2.1.2.1.5.2
Умножим на .
Этап 5.2.2.1.2.1.6
Умножим на .
Этап 5.2.2.1.2.1.7
Умножим на .
Этап 5.2.2.1.2.2
Добавим и .
Этап 5.2.2.1.3
Умножим на .
Этап 5.2.2.2
Добавим и .
Этап 5.2.2.3
Изменим порядок и .
Этап 5.3
Найдем значение .
Этап 5.3.1
Определитель матрицы можно найти, используя формулу .
Этап 5.3.2
Упростим определитель.
Этап 5.3.2.1
Упростим каждый член.
Этап 5.3.2.1.1
Применим свойство дистрибутивности.
Этап 5.3.2.1.2
Умножим на .
Этап 5.3.2.1.3
Умножим на .
Этап 5.3.2.1.4
Умножим на .
Этап 5.3.2.2
Добавим и .
Этап 5.4
Найдем значение .
Этап 5.4.1
Определитель матрицы можно найти, используя формулу .
Этап 5.4.2
Упростим определитель.
Этап 5.4.2.1
Упростим каждый член.
Этап 5.4.2.1.1
Умножим на .
Этап 5.4.2.1.2
Применим свойство дистрибутивности.
Этап 5.4.2.1.3
Умножим на .
Этап 5.4.2.1.4
Умножим на .
Этап 5.4.2.2
Вычтем из .
Этап 5.4.2.3
Изменим порядок и .
Этап 5.5
Упростим определитель.
Этап 5.5.1
Упростим каждый член.
Этап 5.5.1.1
Развернем , умножив каждый член в первом выражении на каждый член во втором выражении.
Этап 5.5.1.2
Упростим каждый член.
Этап 5.5.1.2.1
Умножим на .
Этап 5.5.1.2.2
Умножим на .
Этап 5.5.1.2.3
Умножим на , сложив экспоненты.
Этап 5.5.1.2.3.1
Перенесем .
Этап 5.5.1.2.3.2
Умножим на .
Этап 5.5.1.2.3.2.1
Возведем в степень .
Этап 5.5.1.2.3.2.2
Применим правило степени для объединения показателей.
Этап 5.5.1.2.3.3
Добавим и .
Этап 5.5.1.2.4
Перепишем, используя свойство коммутативности умножения.
Этап 5.5.1.2.5
Умножим на , сложив экспоненты.
Этап 5.5.1.2.5.1
Перенесем .
Этап 5.5.1.2.5.2
Умножим на .
Этап 5.5.1.2.6
Умножим на .
Этап 5.5.1.2.7
Умножим на .
Этап 5.5.1.3
Вычтем из .
Этап 5.5.1.4
Вычтем из .
Этап 5.5.1.5
Применим свойство дистрибутивности.
Этап 5.5.1.6
Умножим на .
Этап 5.5.1.7
Умножим на .
Этап 5.5.1.8
Применим свойство дистрибутивности.
Этап 5.5.1.9
Умножим на .
Этап 5.5.1.10
Умножим на .
Этап 5.5.2
Добавим и .
Этап 5.5.3
Вычтем из .
Этап 5.5.4
Добавим и .
Этап 5.5.5
Вычтем из .
Этап 5.5.6
Перенесем .
Этап 5.5.7
Изменим порядок и .
Этап 6
Примем характеристический многочлен равным , чтобы найти собственные значения .
Этап 7
Этап 7.1
Разложим левую часть уравнения на множители.
Этап 7.1.1
Вынесем множитель из .
Этап 7.1.1.1
Вынесем множитель из .
Этап 7.1.1.2
Вынесем множитель из .
Этап 7.1.1.3
Вынесем множитель из .
Этап 7.1.1.4
Перепишем в виде .
Этап 7.1.1.5
Вынесем множитель из .
Этап 7.1.1.6
Вынесем множитель из .
Этап 7.1.1.7
Вынесем множитель из .
Этап 7.1.2
Разложим на множители, используя теорему о рациональных корнях.
Этап 7.1.2.1
Если у многочленной функции целые коэффициенты, то каждый рациональный ноль будет иметь вид , где — делитель константы, а — делитель старшего коэффициента.
Этап 7.1.2.2
Найдем все комбинации . Это ― возможные корни многочлена.
Этап 7.1.2.3
Подставим и упростим выражение. В этом случае выражение равно , поэтому является корнем многочлена.
Этап 7.1.2.3.1
Подставим в многочлен.
Этап 7.1.2.3.2
Возведем в степень .
Этап 7.1.2.3.3
Возведем в степень .
Этап 7.1.2.3.4
Умножим на .
Этап 7.1.2.3.5
Добавим и .
Этап 7.1.2.3.6
Умножим на .
Этап 7.1.2.3.7
Вычтем из .
Этап 7.1.2.3.8
Добавим и .
Этап 7.1.2.4
Поскольку — известный корень, разделим многочлен на , чтобы найти частное многочленов. Этот многочлен можно будет использовать, чтобы найти оставшиеся корни.
Этап 7.1.2.5
Разделим на .
Этап 7.1.2.5.1
Подготовим многочлены к делению. Если слагаемые представляют не все экспоненты, добавим отсутствующий член со значением .
+ | + | + | + |
Этап 7.1.2.5.2
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
+ | + | + | + |
Этап 7.1.2.5.3
Умножим новое частное на делитель.
+ | + | + | + | ||||||||
+ | + |
Этап 7.1.2.5.4
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
+ | + | + | + | ||||||||
- | - |
Этап 7.1.2.5.5
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
+ | + | + | + | ||||||||
- | - | ||||||||||
+ |
Этап 7.1.2.5.6
Вынесем следующие члены из исходного делимого в текущее делимое.
+ | + | + | + | ||||||||
- | - | ||||||||||
+ | + |
Этап 7.1.2.5.7
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
+ | |||||||||||
+ | + | + | + | ||||||||
- | - | ||||||||||
+ | + |
Этап 7.1.2.5.8
Умножим новое частное на делитель.
+ | |||||||||||
+ | + | + | + | ||||||||
- | - | ||||||||||
+ | + | ||||||||||
+ | + |
Этап 7.1.2.5.9
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
+ | |||||||||||
+ | + | + | + | ||||||||
- | - | ||||||||||
+ | + | ||||||||||
- | - |
Этап 7.1.2.5.10
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
+ | |||||||||||
+ | + | + | + | ||||||||
- | - | ||||||||||
+ | + | ||||||||||
- | - | ||||||||||
+ |
Этап 7.1.2.5.11
Вынесем следующие члены из исходного делимого в текущее делимое.
+ | |||||||||||
+ | + | + | + | ||||||||
- | - | ||||||||||
+ | + | ||||||||||
- | - | ||||||||||
+ | + |
Этап 7.1.2.5.12
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
+ | + | ||||||||||
+ | + | + | + | ||||||||
- | - | ||||||||||
+ | + | ||||||||||
- | - | ||||||||||
+ | + |
Этап 7.1.2.5.13
Умножим новое частное на делитель.
+ | + | ||||||||||
+ | + | + | + | ||||||||
- | - | ||||||||||
+ | + | ||||||||||
- | - | ||||||||||
+ | + | ||||||||||
+ | + |
Этап 7.1.2.5.14
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
+ | + | ||||||||||
+ | + | + | + | ||||||||
- | - | ||||||||||
+ | + | ||||||||||
- | - | ||||||||||
+ | + | ||||||||||
- | - |
Этап 7.1.2.5.15
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
+ | + | ||||||||||
+ | + | + | + | ||||||||
- | - | ||||||||||
+ | + | ||||||||||
- | - | ||||||||||
+ | + | ||||||||||
- | - | ||||||||||
Этап 7.1.2.5.16
Поскольку остаток равен , окончательным ответом является частное.
Этап 7.1.2.6
Запишем в виде набора множителей.
Этап 7.1.3
Разложим на множители, используя метод группировки.
Этап 7.1.3.1
Разложим на множители, используя метод группировки.
Этап 7.1.3.1.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 7.1.3.1.2
Запишем разложение на множители, используя данные целые числа.
Этап 7.1.3.2
Избавимся от ненужных скобок.
Этап 7.1.4
Разложим на множители.
Этап 7.1.4.1
Объединим подобные множители.
Этап 7.1.4.1.1
Возведем в степень .
Этап 7.1.4.1.2
Возведем в степень .
Этап 7.1.4.1.3
Применим правило степени для объединения показателей.
Этап 7.1.4.1.4
Добавим и .
Этап 7.1.4.2
Избавимся от ненужных скобок.
Этап 7.2
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 7.3
Приравняем к , затем решим относительно .
Этап 7.3.1
Приравняем к .
Этап 7.3.2
Решим относительно .
Этап 7.3.2.1
Приравняем к .
Этап 7.3.2.2
Вычтем из обеих частей уравнения.
Этап 7.4
Приравняем к , затем решим относительно .
Этап 7.4.1
Приравняем к .
Этап 7.4.2
Вычтем из обеих частей уравнения.
Этап 7.5
Окончательным решением являются все значения, при которых верно.