Линейная алгебра Примеры

Найти область определения x+5 квадратный корень из x^2+11x+3
Этап 1
Зададим подкоренное выражение в большим или равным , чтобы узнать, где определено данное выражение.
Этап 2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.1
Преобразуем неравенство в уравнение.
Этап 2.2
Используем формулу для нахождения корней квадратного уравнения.
Этап 2.3
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 2.4
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.4.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.4.1.1
Возведем в степень .
Этап 2.4.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 2.4.1.2.1
Умножим на .
Этап 2.4.1.2.2
Умножим на .
Этап 2.4.1.3
Вычтем из .
Этап 2.4.2
Умножим на .
Этап 2.5
Упростим выражение, которое нужно решить для части значения .
Нажмите для увеличения количества этапов...
Этап 2.5.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.5.1.1
Возведем в степень .
Этап 2.5.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 2.5.1.2.1
Умножим на .
Этап 2.5.1.2.2
Умножим на .
Этап 2.5.1.3
Вычтем из .
Этап 2.5.2
Умножим на .
Этап 2.5.3
Заменим на .
Этап 2.5.4
Перепишем в виде .
Этап 2.5.5
Вынесем множитель из .
Этап 2.5.6
Вынесем множитель из .
Этап 2.5.7
Вынесем знак минуса перед дробью.
Этап 2.6
Упростим выражение, которое нужно решить для части значения .
Нажмите для увеличения количества этапов...
Этап 2.6.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.6.1.1
Возведем в степень .
Этап 2.6.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 2.6.1.2.1
Умножим на .
Этап 2.6.1.2.2
Умножим на .
Этап 2.6.1.3
Вычтем из .
Этап 2.6.2
Умножим на .
Этап 2.6.3
Заменим на .
Этап 2.6.4
Перепишем в виде .
Этап 2.6.5
Вынесем множитель из .
Этап 2.6.6
Вынесем множитель из .
Этап 2.6.7
Вынесем знак минуса перед дробью.
Этап 2.7
Объединим решения.
Этап 2.8
Используем каждый корень для создания контрольных интервалов.
Этап 2.9
Выберем тестовое значение из каждого интервала и подставим это значение в исходное неравенство для определения интервалов, удовлетворяющих неравенству.
Нажмите для увеличения количества этапов...
Этап 2.9.1
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Нажмите для увеличения количества этапов...
Этап 2.9.1.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 2.9.1.2
Заменим на в исходном неравенстве.
Этап 2.9.1.3
Левая часть больше правой части , значит, данное утверждение всегда истинно.
True
True
Этап 2.9.2
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Нажмите для увеличения количества этапов...
Этап 2.9.2.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 2.9.2.2
Заменим на в исходном неравенстве.
Этап 2.9.2.3
Левая часть меньше правой части , значит, данное утверждение ложно.
False
False
Этап 2.9.3
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Нажмите для увеличения количества этапов...
Этап 2.9.3.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 2.9.3.2
Заменим на в исходном неравенстве.
Этап 2.9.3.3
Левая часть больше правой части , значит, данное утверждение всегда истинно.
True
True
Этап 2.9.4
Сравним интервалы, чтобы определить, какие из них удовлетворяют исходному неравенству.
Истина
Ложь
Истина
Истина
Ложь
Истина
Этап 2.10
Решение состоит из всех истинных интервалов.
или
или
Этап 3
Область определения ― это все значения , при которых выражение определено.
Интервальное представление:
Обозначение построения множества:
Этап 4