Введите задачу...
Линейная алгебра Примеры
Этап 1
Этап 1.1
Умножим на , сложив экспоненты.
Этап 1.1.1
Перенесем .
Этап 1.1.2
Умножим на .
Этап 1.2
Умножим на , сложив экспоненты.
Этап 1.2.1
Перенесем .
Этап 1.2.2
Умножим на .
Этап 1.3
Умножим на , сложив экспоненты.
Этап 1.3.1
Перенесем .
Этап 1.3.2
Умножим на .
Этап 1.4
Умножим на , сложив экспоненты.
Этап 1.4.1
Перенесем .
Этап 1.4.2
Умножим на .
Этап 2
Вычтем из обеих частей уравнения.
Этап 3
Этап 3.1
Разделим каждый член на .
Этап 3.2
Упростим левую часть.
Этап 3.2.1
Сократим общий множитель .
Этап 3.2.1.1
Сократим общий множитель.
Этап 3.2.1.2
Разделим на .
Этап 3.3
Упростим правую часть.
Этап 3.3.1
Упростим каждый член.
Этап 3.3.1.1
Сократим общий множитель и .
Этап 3.3.1.1.1
Вынесем множитель из .
Этап 3.3.1.1.2
Сократим общие множители.
Этап 3.3.1.1.2.1
Вынесем множитель из .
Этап 3.3.1.1.2.2
Сократим общий множитель.
Этап 3.3.1.1.2.3
Перепишем это выражение.
Этап 3.3.1.2
Сократим общий множитель .
Этап 3.3.1.2.1
Сократим общий множитель.
Этап 3.3.1.2.2
Разделим на .
Этап 4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 5
Этап 5.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 5.2
Объединим и .
Этап 5.3
Объединим числители над общим знаменателем.
Этап 5.4
Перепишем в виде .
Этап 5.5
Умножим на .
Этап 5.6
Объединим и упростим знаменатель.
Этап 5.6.1
Умножим на .
Этап 5.6.2
Возведем в степень .
Этап 5.6.3
Возведем в степень .
Этап 5.6.4
Применим правило степени для объединения показателей.
Этап 5.6.5
Добавим и .
Этап 5.6.6
Перепишем в виде .
Этап 5.6.6.1
С помощью запишем в виде .
Этап 5.6.6.2
Применим правило степени и перемножим показатели, .
Этап 5.6.6.3
Объединим и .
Этап 5.6.6.4
Сократим общий множитель .
Этап 5.6.6.4.1
Сократим общий множитель.
Этап 5.6.6.4.2
Перепишем это выражение.
Этап 5.6.6.5
Упростим.
Этап 5.7
Объединим, используя правило умножения для радикалов.
Этап 5.8
Изменим порядок множителей в .
Этап 6
Этап 6.1
Сначала с помощью положительного значения найдем первое решение.
Этап 6.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 6.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 7
Зададим подкоренное выражение в большим или равным , чтобы узнать, где определено данное выражение.
Этап 8
Этап 8.1
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 8.2
Приравняем к .
Этап 8.3
Приравняем к , затем решим относительно .
Этап 8.3.1
Приравняем к .
Этап 8.3.2
Решим относительно .
Этап 8.3.2.1
Вычтем из обеих частей уравнения.
Этап 8.3.2.2
Разделим каждый член на и упростим.
Этап 8.3.2.2.1
Разделим каждый член на .
Этап 8.3.2.2.2
Упростим левую часть.
Этап 8.3.2.2.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 8.3.2.2.2.2
Сократим общий множитель .
Этап 8.3.2.2.2.2.1
Сократим общий множитель.
Этап 8.3.2.2.2.2.2
Разделим на .
Этап 8.3.2.2.3
Упростим правую часть.
Этап 8.3.2.2.3.1
Деление двух отрицательных значений дает положительное значение.
Этап 8.4
Окончательным решением являются все значения, при которых верно.
Этап 9
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 10
Область определения ― это все значения , при которых выражение определено.
Обозначение построения множества: