Введите задачу...
Линейная алгебра Примеры
Этап 1
Этап 1.1
Добавим к обеим частям уравнения.
Этап 1.2
Добавим к обеим частям уравнения.
Этап 2
Этап 2.1
Разделим каждый член на .
Этап 2.2
Упростим левую часть.
Этап 2.2.1
Сократим общий множитель .
Этап 2.2.1.1
Сократим общий множитель.
Этап 2.2.1.2
Разделим на .
Этап 2.3
Упростим правую часть.
Этап 2.3.1
Разделим на .
Этап 3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 4
Этап 4.1
Вынесем множитель из .
Этап 4.1.1
Вынесем множитель из .
Этап 4.1.2
Вынесем множитель из .
Этап 4.1.3
Вынесем множитель из .
Этап 4.2
Запишем в виде дроби с общим знаменателем.
Этап 4.3
Объединим числители над общим знаменателем.
Этап 4.4
Объединим и .
Этап 4.5
Перепишем в виде .
Этап 4.5.1
Вынесем полную степень из .
Этап 4.5.2
Вынесем полную степень из .
Этап 4.5.3
Перегруппируем дробь .
Этап 4.6
Вынесем члены из-под знака корня.
Этап 4.7
Возведем в степень .
Этап 4.8
Объединим и .
Этап 5
Этап 5.1
Сначала с помощью положительного значения найдем первое решение.
Этап 5.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 5.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 6
Зададим подкоренное выражение в большим или равным , чтобы узнать, где определено данное выражение.
Этап 7
Этап 7.1
Вычтем из обеих частей неравенства.
Этап 7.2
Поскольку левая часть имеет четную степень, она всегда положительна для всех вещественных чисел.
Все вещественные числа
Все вещественные числа
Этап 8
Область определения ― все вещественные числа.
Интервальное представление:
Обозначение построения множества:
Этап 9