Введите задачу...
Линейная алгебра Примеры
, ,
Этап 1
Вычтем из обеих частей уравнения.
Этап 2
Запишем систему уравнений в матричном виде.
Этап 3
Этап 3.1
Multiply each element of by to make the entry at a .
Этап 3.1.1
Multiply each element of by to make the entry at a .
Этап 3.1.2
Упростим .
Этап 3.2
Perform the row operation to make the entry at a .
Этап 3.2.1
Perform the row operation to make the entry at a .
Этап 3.2.2
Упростим .
Этап 3.3
Multiply each element of by to make the entry at a .
Этап 3.3.1
Multiply each element of by to make the entry at a .
Этап 3.3.2
Упростим .
Этап 3.4
Perform the row operation to make the entry at a .
Этап 3.4.1
Perform the row operation to make the entry at a .
Этап 3.4.2
Упростим .
Этап 3.5
Multiply each element of by to make the entry at a .
Этап 3.5.1
Multiply each element of by to make the entry at a .
Этап 3.5.2
Упростим .
Этап 3.6
Perform the row operation to make the entry at a .
Этап 3.6.1
Perform the row operation to make the entry at a .
Этап 3.6.2
Упростим .
Этап 3.7
Perform the row operation to make the entry at a .
Этап 3.7.1
Perform the row operation to make the entry at a .
Этап 3.7.2
Упростим .
Этап 4
Используем полученную матрицу для описания окончательного решения системы уравнений.
Этап 5
Добавим к обеим частям уравнения.
Этап 6
Добавим к обеим частям уравнения.
Этап 7
Вычтем из обеих частей уравнения.
Этап 8
Решение представляет собой набор упорядоченных пар, для которых система верна.
Этап 9
Разложим вектор решения, переупорядочив каждое уравнение, представленное в виде приведенной расширенной матрицы, путем решения уравнения относительно зависимой переменной в каждой строке, что приведет к равенству векторов.