Введите задачу...
Линейная алгебра Примеры
Этап 1
Умножим на .
Этап 2
Этап 2.1
Умножим на .
Этап 2.2
Возведем в степень .
Этап 2.3
Возведем в степень .
Этап 2.4
Применим правило степени для объединения показателей.
Этап 2.5
Добавим и .
Этап 2.6
Перепишем в виде .
Этап 2.6.1
С помощью запишем в виде .
Этап 2.6.2
Применим правило степени и перемножим показатели, .
Этап 2.6.3
Объединим и .
Этап 2.6.4
Сократим общий множитель .
Этап 2.6.4.1
Сократим общий множитель.
Этап 2.6.4.2
Перепишем это выражение.
Этап 2.6.5
Найдем экспоненту.
Этап 3
Умножим на .
Этап 4
Этап 4.1
Умножим на .
Этап 4.2
Возведем в степень .
Этап 4.3
Возведем в степень .
Этап 4.4
Применим правило степени для объединения показателей.
Этап 4.5
Добавим и .
Этап 4.6
Перепишем в виде .
Этап 4.6.1
С помощью запишем в виде .
Этап 4.6.2
Применим правило степени и перемножим показатели, .
Этап 4.6.3
Объединим и .
Этап 4.6.4
Сократим общий множитель .
Этап 4.6.4.1
Сократим общий множитель.
Этап 4.6.4.2
Перепишем это выражение.
Этап 4.6.5
Найдем экспоненту.
Этап 5
Умножим на .
Этап 6
Этап 6.1
Умножим на .
Этап 6.2
Возведем в степень .
Этап 6.3
Возведем в степень .
Этап 6.4
Применим правило степени для объединения показателей.
Этап 6.5
Добавим и .
Этап 6.6
Перепишем в виде .
Этап 6.6.1
С помощью запишем в виде .
Этап 6.6.2
Применим правило степени и перемножим показатели, .
Этап 6.6.3
Объединим и .
Этап 6.6.4
Сократим общий множитель .
Этап 6.6.4.1
Сократим общий множитель.
Этап 6.6.4.2
Перепишем это выражение.
Этап 6.6.5
Найдем экспоненту.
Этап 7
Умножим на .
Этап 8
Этап 8.1
Умножим на .
Этап 8.2
Возведем в степень .
Этап 8.3
Возведем в степень .
Этап 8.4
Применим правило степени для объединения показателей.
Этап 8.5
Добавим и .
Этап 8.6
Перепишем в виде .
Этап 8.6.1
С помощью запишем в виде .
Этап 8.6.2
Применим правило степени и перемножим показатели, .
Этап 8.6.3
Объединим и .
Этап 8.6.4
Сократим общий множитель .
Этап 8.6.4.1
Сократим общий множитель.
Этап 8.6.4.2
Перепишем это выражение.
Этап 8.6.5
Найдем экспоненту.
Этап 9
Умножим на .
Этап 10
Этап 10.1
Умножим на .
Этап 10.2
Возведем в степень .
Этап 10.3
Возведем в степень .
Этап 10.4
Применим правило степени для объединения показателей.
Этап 10.5
Добавим и .
Этап 10.6
Перепишем в виде .
Этап 10.6.1
С помощью запишем в виде .
Этап 10.6.2
Применим правило степени и перемножим показатели, .
Этап 10.6.3
Объединим и .
Этап 10.6.4
Сократим общий множитель .
Этап 10.6.4.1
Сократим общий множитель.
Этап 10.6.4.2
Перепишем это выражение.
Этап 10.6.5
Найдем экспоненту.
Этап 11
Умножим на .
Этап 12
Этап 12.1
Умножим на .
Этап 12.2
Возведем в степень .
Этап 12.3
Возведем в степень .
Этап 12.4
Применим правило степени для объединения показателей.
Этап 12.5
Добавим и .
Этап 12.6
Перепишем в виде .
Этап 12.6.1
С помощью запишем в виде .
Этап 12.6.2
Применим правило степени и перемножим показатели, .
Этап 12.6.3
Объединим и .
Этап 12.6.4
Сократим общий множитель .
Этап 12.6.4.1
Сократим общий множитель.
Этап 12.6.4.2
Перепишем это выражение.
Этап 12.6.5
Найдем экспоненту.
Этап 13
Умножим на .
Этап 14
Этап 14.1
Умножим на .
Этап 14.2
Возведем в степень .
Этап 14.3
Возведем в степень .
Этап 14.4
Применим правило степени для объединения показателей.
Этап 14.5
Добавим и .
Этап 14.6
Перепишем в виде .
Этап 14.6.1
С помощью запишем в виде .
Этап 14.6.2
Применим правило степени и перемножим показатели, .
Этап 14.6.3
Объединим и .
Этап 14.6.4
Сократим общий множитель .
Этап 14.6.4.1
Сократим общий множитель.
Этап 14.6.4.2
Перепишем это выражение.
Этап 14.6.5
Найдем экспоненту.
Этап 15
Этап 15.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is and the second matrix is .
Этап 15.2
Умножим каждую строку первой матрицы на каждый столбец второй матрицы.
Этап 15.3
Упростим каждый элемент матрицы путем перемножения всех выражений.
Этап 15.3.1
Умножим на .
Этап 15.3.2
Добавим и .