Введите задачу...
Конечная математика Примеры
Этап 1
Этап 1.1
Вычтем из обеих частей уравнения.
Этап 1.2
Добавим к обеим частям уравнения.
Этап 2
Этап 2.1
Разделим каждый член на .
Этап 2.2
Упростим левую часть.
Этап 2.2.1
Сократим общий множитель .
Этап 2.2.1.1
Сократим общий множитель.
Этап 2.2.1.2
Разделим на .
Этап 2.3
Упростим правую часть.
Этап 2.3.1
Упростим каждый член.
Этап 2.3.1.1
Вынесем знак минуса перед дробью.
Этап 2.3.1.2
Разделим на .
Этап 3
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 4
Этап 4.1
Вынесем множитель из .
Этап 4.1.1
Вынесем множитель из .
Этап 4.1.2
Вынесем множитель из .
Этап 4.1.3
Вынесем множитель из .
Этап 4.2
Упростим выражение.
Этап 4.2.1
Перепишем в виде .
Этап 4.2.2
Перепишем в виде .
Этап 4.2.3
Изменим порядок и .
Этап 4.3
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 4.4
Запишем в виде дроби с общим знаменателем.
Этап 4.5
Объединим числители над общим знаменателем.
Этап 4.6
Запишем в виде дроби с общим знаменателем.
Этап 4.7
Объединим числители над общим знаменателем.
Этап 4.8
Объединим показатели степеней.
Этап 4.8.1
Объединим и .
Этап 4.8.2
Умножим на .
Этап 4.8.3
Умножим на .
Этап 4.9
Перепишем в виде .
Этап 4.9.1
Вынесем полную степень из .
Этап 4.9.2
Вынесем полную степень из .
Этап 4.9.3
Перегруппируем дробь .
Этап 4.10
Вынесем члены из-под знака корня.
Этап 4.11
Объединим и .
Этап 5
Этап 5.1
Сначала с помощью положительного значения найдем первое решение.
Этап 5.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 5.3
Полное решение является результатом как положительных, так и отрицательных частей решения.