Конечная математика Примеры

Проверить непрерывность f(x)=(3x+1)/(x-x^2)
Этап 1
Find the domain to determine if the expression is continuous.
Нажмите для увеличения количества этапов...
Этап 1.1
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 1.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Разложим левую часть уравнения на множители.
Нажмите для увеличения количества этапов...
Этап 1.2.1.1
Пусть . Подставим вместо для всех.
Этап 1.2.1.2
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 1.2.1.2.1
Возведем в степень .
Этап 1.2.1.2.2
Вынесем множитель из .
Этап 1.2.1.2.3
Вынесем множитель из .
Этап 1.2.1.2.4
Вынесем множитель из .
Этап 1.2.1.3
Заменим все вхождения на .
Этап 1.2.2
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 1.2.3
Приравняем к .
Этап 1.2.4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.2.4.1
Приравняем к .
Этап 1.2.4.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.2.4.2.1
Вычтем из обеих частей уравнения.
Этап 1.2.4.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 1.2.4.2.2.1
Разделим каждый член на .
Этап 1.2.4.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.4.2.2.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 1.2.4.2.2.2.2
Разделим на .
Этап 1.2.4.2.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.4.2.2.3.1
Разделим на .
Этап 1.2.5
Окончательным решением являются все значения, при которых верно.
Этап 1.3
Область определения ― это все значения , при которых выражение определено.
Интервальное представление:
Обозначение построения множества:
Интервальное представление:
Обозначение построения множества:
Этап 2
Поскольку область определения — это не все вещественные числа, не является непрерывной на множестве всех вещественных чисел.
Не является непрерывной
Этап 3