Введите задачу...
Конечная математика Примеры
Этап 1
Этап 1.1
Упростим левую часть.
Этап 1.1.1
Упростим каждый член.
Этап 1.1.1.1
Применим свойство дистрибутивности.
Этап 1.1.1.2
Умножим на .
Этап 1.1.1.3
Перенесем влево от .
Этап 1.2
Перенесем все выражения в левую часть уравнения.
Этап 1.2.1
Вычтем из обеих частей уравнения.
Этап 1.2.2
Вычтем из обеих частей уравнения.
Этап 1.3
Упростим .
Этап 1.3.1
Объединим противоположные члены в .
Этап 1.3.1.1
Вычтем из .
Этап 1.3.1.2
Добавим и .
Этап 1.3.2
Вычтем из .
Этап 2
Дискриминант квадратного уравнения ― это выражение под знаком корня в формуле для корней квадратного уравнения.
Этап 3
Подставим значения , и .
Этап 4
Этап 4.1
Упростим каждый член.
Этап 4.1.1
Возведение в любую положительную степень дает .
Этап 4.1.2
Умножим .
Этап 4.1.2.1
Умножим на .
Этап 4.1.2.2
Умножим на .
Этап 4.2
Добавим и .
Этап 5
Характер корней квадратного уравнения может быть отнесен к одной из трех категорий в зависимости от значения дискриминанта :
означает, что существуют различные вещественные корни .
означает, что существуют одинаковые вещественные корни или отдельный вещественный корень .
означает, что вещественных корней нет, но комплексных корней — .
Поскольку дискриминант больше , имеются два вещественных корня.
Два вещественных корня