Введите задачу...
Конечная математика Примеры
Этап 1
Вычтем из обеих частей уравнения.
Этап 2
Используем формулу разности логарифмов с одинаковым основанием: .
Этап 3
Добавим к обеим частям уравнения.
Этап 4
Перепишем в экспоненциальной форме, используя определение логарифма. Если и — положительные вещественные числа и , то эквивалентно .
Этап 5
Этап 5.1
Перепишем уравнение в виде .
Этап 5.2
Возведем в степень .
Этап 5.3
Найдем НОК знаменателей членов уравнения.
Этап 5.3.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 5.3.2
Избавимся от скобок.
Этап 5.3.3
НОК единицы и любого выражения есть это выражение.
Этап 5.4
Каждый член в умножим на , чтобы убрать дроби.
Этап 5.4.1
Умножим каждый член на .
Этап 5.4.2
Упростим левую часть.
Этап 5.4.2.1
Сократим общий множитель .
Этап 5.4.2.1.1
Сократим общий множитель.
Этап 5.4.2.1.2
Перепишем это выражение.
Этап 5.4.3
Упростим правую часть.
Этап 5.4.3.1
Применим свойство дистрибутивности.
Этап 5.4.3.2
Умножим на .
Этап 5.5
Решим уравнение.
Этап 5.5.1
Перенесем все члены с в левую часть уравнения.
Этап 5.5.1.1
Вычтем из обеих частей уравнения.
Этап 5.5.1.2
Вычтем из .
Этап 5.5.2
Разделим каждый член на и упростим.
Этап 5.5.2.1
Разделим каждый член на .
Этап 5.5.2.2
Упростим левую часть.
Этап 5.5.2.2.1
Сократим общий множитель .
Этап 5.5.2.2.1.1
Сократим общий множитель.
Этап 5.5.2.2.1.2
Разделим на .
Этап 5.5.2.3
Упростим правую часть.
Этап 5.5.2.3.1
Деление двух отрицательных значений дает положительное значение.