Конечная математика Примеры

Решить с помощью разложения на множители (x-3)(1-x)=1
Этап 1
Вычтем из обеих частей уравнения.
Этап 2
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.1.1
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 2.1.1.1
Применим свойство дистрибутивности.
Этап 2.1.1.2
Применим свойство дистрибутивности.
Этап 2.1.1.3
Применим свойство дистрибутивности.
Этап 2.1.2
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 2.1.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.1.2.1.1
Умножим на .
Этап 2.1.2.1.2
Перепишем, используя свойство коммутативности умножения.
Этап 2.1.2.1.3
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 2.1.2.1.3.1
Перенесем .
Этап 2.1.2.1.3.2
Умножим на .
Этап 2.1.2.1.4
Умножим на .
Этап 2.1.2.1.5
Умножим на .
Этап 2.1.2.2
Добавим и .
Этап 2.2
Вычтем из .
Этап 3
Пусть . Подставим вместо для всех.
Этап 4
Разложим на множители методом группировки
Нажмите для увеличения количества этапов...
Этап 4.1
Изменим порядок членов.
Этап 4.2
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Нажмите для увеличения количества этапов...
Этап 4.2.1
Вынесем множитель из .
Этап 4.2.2
Запишем как плюс
Этап 4.2.3
Применим свойство дистрибутивности.
Этап 4.3
Вынесем наибольший общий делитель из каждой группы.
Нажмите для увеличения количества этапов...
Этап 4.3.1
Сгруппируем первые два члена и последние два члена.
Этап 4.3.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 4.4
Разложим многочлен, вынеся наибольший общий делитель .
Этап 5
Заменим все вхождения на .
Этап 6
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 7
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 7.1
Приравняем к .
Этап 7.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 7.2.1
Вычтем из обеих частей уравнения.
Этап 7.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 7.2.2.1
Разделим каждый член на .
Этап 7.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 7.2.2.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 7.2.2.2.2
Разделим на .
Этап 7.2.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 7.2.2.3.1
Разделим на .
Этап 8
Окончательным решением являются все значения, при которых верно.