Введите задачу...
Конечная математика Примеры
Этап 1
Этап 1.1
Применим правило , чтобы представить возведение в степень в виде радикала.
Этап 1.2
Любое число, возведенное в степень , является основанием.
Этап 2
Зададим аргумент в большим , чтобы узнать, где определено данное выражение.
Этап 3
Этап 3.1
Чтобы избавиться от радикала в левой части неравенства, возведем обе части неравенства в квадрат.
Этап 3.2
Упростим каждую часть неравенства.
Этап 3.2.1
С помощью запишем в виде .
Этап 3.2.2
Упростим левую часть.
Этап 3.2.2.1
Упростим .
Этап 3.2.2.1.1
Применим правило умножения к .
Этап 3.2.2.1.2
Возведем в степень .
Этап 3.2.2.1.3
Перемножим экспоненты в .
Этап 3.2.2.1.3.1
Применим правило степени и перемножим показатели, .
Этап 3.2.2.1.3.2
Сократим общий множитель .
Этап 3.2.2.1.3.2.1
Сократим общий множитель.
Этап 3.2.2.1.3.2.2
Перепишем это выражение.
Этап 3.2.2.1.4
Упростим.
Этап 3.2.3
Упростим правую часть.
Этап 3.2.3.1
Возведение в любую положительную степень дает .
Этап 3.3
Разделим каждый член на и упростим.
Этап 3.3.1
Разделим каждый член на .
Этап 3.3.2
Упростим левую часть.
Этап 3.3.2.1
Сократим общий множитель .
Этап 3.3.2.1.1
Сократим общий множитель.
Этап 3.3.2.1.2
Разделим на .
Этап 3.3.3
Упростим правую часть.
Этап 3.3.3.1
Разделим на .
Этап 3.4
Найдем область определения .
Этап 3.4.1
Зададим подкоренное выражение в большим или равным , чтобы узнать, где определено данное выражение.
Этап 3.4.2
Область определения ― это все значения , при которых выражение определено.
Этап 3.5
Решение состоит из всех истинных интервалов.
Этап 4
Зададим подкоренное выражение в большим или равным , чтобы узнать, где определено данное выражение.
Этап 5
Область определения ― это все значения , при которых выражение определено.
Интервальное представление:
Обозначение построения множества:
Этап 6