Конечная математика Примеры

Решить с помощью разложения на множители 12x^2=147
Этап 1
Вычтем из обеих частей уравнения.
Этап 2
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 2.1
Вынесем множитель из .
Этап 2.2
Вынесем множитель из .
Этап 2.3
Вынесем множитель из .
Этап 3
Перепишем в виде .
Этап 4
Перепишем в виде .
Этап 5
Разложим на множители.
Нажмите для увеличения количества этапов...
Этап 5.1
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 5.2
Избавимся от ненужных скобок.
Этап 6
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 7
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 7.1
Приравняем к .
Этап 7.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 7.2.1
Вычтем из обеих частей уравнения.
Этап 7.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 7.2.2.1
Разделим каждый член на .
Этап 7.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 7.2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 7.2.2.2.1.1
Сократим общий множитель.
Этап 7.2.2.2.1.2
Разделим на .
Этап 7.2.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 7.2.2.3.1
Вынесем знак минуса перед дробью.
Этап 8
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 8.1
Приравняем к .
Этап 8.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 8.2.1
Добавим к обеим частям уравнения.
Этап 8.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 8.2.2.1
Разделим каждый член на .
Этап 8.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 8.2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 8.2.2.2.1.1
Сократим общий множитель.
Этап 8.2.2.2.1.2
Разделим на .
Этап 9
Окончательным решением являются все значения, при которых верно.