Введите задачу...
Конечная математика Примеры
Этап 1
Вычтем из обеих частей уравнения.
Этап 2
Этап 2.1
Применим свойство дистрибутивности.
Этап 2.2
Перепишем, используя свойство коммутативности умножения.
Этап 2.3
Умножим на .
Этап 2.4
Упростим каждый член.
Этап 2.4.1
Умножим на , сложив экспоненты.
Этап 2.4.1.1
Перенесем .
Этап 2.4.1.2
Умножим на .
Этап 2.4.2
Умножим на .
Этап 3
Этап 3.1
Вынесем множитель из .
Этап 3.2
Вынесем множитель из .
Этап 3.3
Вынесем множитель из .
Этап 3.4
Вынесем множитель из .
Этап 3.5
Вынесем множитель из .
Этап 4
Этап 4.1
Разделим каждый член на .
Этап 4.2
Упростим левую часть.
Этап 4.2.1
Сократим общий множитель .
Этап 4.2.1.1
Сократим общий множитель.
Этап 4.2.1.2
Разделим на .
Этап 4.3
Упростим правую часть.
Этап 4.3.1
Разделим на .
Этап 5
Используем формулу для нахождения корней квадратного уравнения.
Этап 6
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 7
Этап 7.1
Упростим числитель.
Этап 7.1.1
Возведем в степень .
Этап 7.1.2
Умножим .
Этап 7.1.2.1
Умножим на .
Этап 7.1.2.2
Умножим на .
Этап 7.1.3
Добавим и .
Этап 7.2
Умножим на .
Этап 8
Этап 8.1
Упростим числитель.
Этап 8.1.1
Возведем в степень .
Этап 8.1.2
Умножим .
Этап 8.1.2.1
Умножим на .
Этап 8.1.2.2
Умножим на .
Этап 8.1.3
Добавим и .
Этап 8.2
Умножим на .
Этап 8.3
Заменим на .
Этап 9
Этап 9.1
Упростим числитель.
Этап 9.1.1
Возведем в степень .
Этап 9.1.2
Умножим .
Этап 9.1.2.1
Умножим на .
Этап 9.1.2.2
Умножим на .
Этап 9.1.3
Добавим и .
Этап 9.2
Умножим на .
Этап 9.3
Заменим на .
Этап 10
Окончательный ответ является комбинацией обоих решений.
Этап 11
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: