Конечная математика Примеры

Решить через дискриминант 5^(x-1)=17
Этап 1
Вычтем из обеих частей уравнения.
Этап 2
Добавим к обеим частям уравнения.
Этап 3
Возьмем натуральный логарифм обеих частей уравнения, чтобы удалить переменную из показателя степени.
Этап 4
Развернем , вынося из логарифма.
Этап 5
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 5.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 5.1.1
Применим свойство дистрибутивности.
Этап 5.1.2
Перепишем в виде .
Этап 6
Перенесем все члены с логарифмами в левую часть уравнения.
Этап 7
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 7.1
Добавим к обеим частям уравнения.
Этап 7.2
Добавим к обеим частям уравнения.
Этап 8
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 8.1
Разделим каждый член на .
Этап 8.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 8.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 8.2.1.1
Сократим общий множитель.
Этап 8.2.1.2
Разделим на .
Этап 8.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 8.3.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 8.3.1.1
Сократим общий множитель.
Этап 8.3.1.2
Перепишем это выражение.