Конечная математика Примеры

Решить через дискриминант 1/(x-3)-1/(x-9)=11
Этап 1
Вычтем из обеих частей уравнения.
Этап 2
Найдем НОК знаменателей членов уравнения.
Нажмите для увеличения количества этапов...
Этап 2.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 2.2
НОК — это наименьшее положительное число, на которое все числа делятся без остатка.
1. Перечислим простые множители каждого числа.
2. Применим каждый множитель наибольшее количество раз, которое он встречается в любом из чисел.
Этап 2.3
Число не является простым числом, поскольку оно имеет только один положительный делитель ― само число.
Не является простым
Этап 2.4
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 2.5
Множителем является само значение .
встречается раз.
Этап 2.6
Множителем является само значение .
встречается раз.
Этап 2.7
НОК представляет собой произведение всех множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 3
Каждый член в умножим на , чтобы убрать дроби.
Нажмите для увеличения количества этапов...
Этап 3.1
Умножим каждый член на .
Этап 3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.2.1.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.1.1.1
Сократим общий множитель.
Этап 3.2.1.1.2
Перепишем это выражение.
Этап 3.2.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.1.2.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 3.2.1.2.2
Вынесем множитель из .
Этап 3.2.1.2.3
Сократим общий множитель.
Этап 3.2.1.2.4
Перепишем это выражение.
Этап 3.2.1.3
Применим свойство дистрибутивности.
Этап 3.2.1.4
Умножим на .
Этап 3.2.1.5
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 3.2.1.5.1
Применим свойство дистрибутивности.
Этап 3.2.1.5.2
Применим свойство дистрибутивности.
Этап 3.2.1.5.3
Применим свойство дистрибутивности.
Этап 3.2.1.6
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 3.2.1.6.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.2.1.6.1.1
Умножим на .
Этап 3.2.1.6.1.2
Перенесем влево от .
Этап 3.2.1.6.1.3
Умножим на .
Этап 3.2.1.6.2
Вычтем из .
Этап 3.2.1.7
Применим свойство дистрибутивности.
Этап 3.2.1.8
Упростим.
Нажмите для увеличения количества этапов...
Этап 3.2.1.8.1
Умножим на .
Этап 3.2.1.8.2
Умножим на .
Этап 3.2.2
Упростим путем добавления членов.
Нажмите для увеличения количества этапов...
Этап 3.2.2.1
Объединим противоположные члены в .
Нажмите для увеличения количества этапов...
Этап 3.2.2.1.1
Вычтем из .
Этап 3.2.2.1.2
Вычтем из .
Этап 3.2.2.2
Упростим путем сложения и вычитания.
Нажмите для увеличения количества этапов...
Этап 3.2.2.2.1
Добавим и .
Этап 3.2.2.2.2
Вычтем из .
Этап 3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 3.3.1.1
Применим свойство дистрибутивности.
Этап 3.3.1.2
Применим свойство дистрибутивности.
Этап 3.3.1.3
Применим свойство дистрибутивности.
Этап 3.3.2
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 3.3.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.3.2.1.1
Умножим на .
Этап 3.3.2.1.2
Перенесем влево от .
Этап 3.3.2.1.3
Умножим на .
Этап 3.3.2.2
Вычтем из .
Этап 3.3.3
Умножим на .
Этап 4
Решим уравнение.
Нажмите для увеличения количества этапов...
Этап 4.1
Используем формулу для нахождения корней квадратного уравнения.
Этап 4.2
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 4.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.3.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 4.3.1.1
Возведем в степень .
Этап 4.3.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 4.3.1.2.1
Умножим на .
Этап 4.3.1.2.2
Умножим на .
Этап 4.3.1.3
Вычтем из .
Этап 4.3.1.4
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 4.3.1.4.1
Вынесем множитель из .
Этап 4.3.1.4.2
Перепишем в виде .
Этап 4.3.1.5
Вынесем члены из-под знака корня.
Этап 4.3.2
Умножим на .
Этап 4.3.3
Упростим .
Этап 4.4
Окончательный ответ является комбинацией обоих решений.
Этап 5
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: