Введите задачу...
Конечная математика Примеры
Этап 1
Этап 1.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Этап 1.1.1
Вынесем множитель из .
Этап 1.1.2
Запишем как плюс
Этап 1.1.3
Применим свойство дистрибутивности.
Этап 1.2
Вынесем наибольший общий делитель из каждой группы.
Этап 1.2.1
Сгруппируем первые два члена и последние два члена.
Этап 1.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 1.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 2
Этап 2.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Этап 2.1.1
Вынесем множитель из .
Этап 2.1.2
Запишем как плюс
Этап 2.1.3
Применим свойство дистрибутивности.
Этап 2.2
Вынесем наибольший общий делитель из каждой группы.
Этап 2.2.1
Сгруппируем первые два члена и последние два члена.
Этап 2.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 2.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 3
Этап 3.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Этап 3.1.1
Вынесем множитель из .
Этап 3.1.2
Запишем как плюс
Этап 3.1.3
Применим свойство дистрибутивности.
Этап 3.1.4
Умножим на .
Этап 3.2
Вынесем наибольший общий делитель из каждой группы.
Этап 3.2.1
Сгруппируем первые два члена и последние два члена.
Этап 3.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 3.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 4
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 5
НОК — это наименьшее положительное число, на которое все числа делятся без остатка.
1. Перечислим простые множители каждого числа.
2. Применим каждый множитель наибольшее количество раз, которое он встречается в любом из чисел.
Этап 6
Число не является простым числом, поскольку оно имеет только один положительный делитель ― само число.
Не является простым
Этап 7
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 8
Множителем является само значение .
встречается раз.
Этап 9
Множителем является само значение .
встречается раз.
Этап 10
Множителем является само значение .
встречается раз.
Этап 11
Множителем является само значение .
встречается раз.
Этап 12
Множителем является само значение .
встречается раз.
Этап 13
НОК представляет собой произведение всех множителей в максимальной степени, с которой они входят в какой-либо из членов.