Конечная математика Примеры

Определить корни (нули) f(x)=3x^3-12x^2+3x
Этап 1
Приравняем к .
Этап 2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 2.1.1
Вынесем множитель из .
Этап 2.1.2
Вынесем множитель из .
Этап 2.1.3
Вынесем множитель из .
Этап 2.1.4
Вынесем множитель из .
Этап 2.1.5
Вынесем множитель из .
Этап 2.2
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 2.3
Приравняем к .
Этап 2.4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.4.1
Приравняем к .
Этап 2.4.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.4.2.1
Используем формулу для нахождения корней квадратного уравнения.
Этап 2.4.2.2
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 2.4.2.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.4.2.3.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.4.2.3.1.1
Возведем в степень .
Этап 2.4.2.3.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 2.4.2.3.1.2.1
Умножим на .
Этап 2.4.2.3.1.2.2
Умножим на .
Этап 2.4.2.3.1.3
Вычтем из .
Этап 2.4.2.3.1.4
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 2.4.2.3.1.4.1
Вынесем множитель из .
Этап 2.4.2.3.1.4.2
Перепишем в виде .
Этап 2.4.2.3.1.5
Вынесем члены из-под знака корня.
Этап 2.4.2.3.2
Умножим на .
Этап 2.4.2.3.3
Упростим .
Этап 2.4.2.4
Окончательный ответ является комбинацией обоих решений.
Этап 2.5
Окончательным решением являются все значения, при которых верно.
Этап 3
Результат можно представить в различном виде.
Точная форма:
Десятичная форма:
Этап 4