Конечная математика Примеры

Преобразовать к интервальному виду (x+7)^2>50x-27
Этап 1
Перенесем все члены с в левую часть неравенства.
Нажмите для увеличения количества этапов...
Этап 1.1
Вычтем из обеих частей неравенства.
Этап 1.2
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.2.1
Перепишем в виде .
Этап 1.2.2
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 1.2.2.1
Применим свойство дистрибутивности.
Этап 1.2.2.2
Применим свойство дистрибутивности.
Этап 1.2.2.3
Применим свойство дистрибутивности.
Этап 1.2.3
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 1.2.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.2.3.1.1
Умножим на .
Этап 1.2.3.1.2
Перенесем влево от .
Этап 1.2.3.1.3
Умножим на .
Этап 1.2.3.2
Добавим и .
Этап 1.3
Вычтем из .
Этап 2
Перенесем все члены в левую часть уравнения и упростим.
Нажмите для увеличения количества этапов...
Этап 2.1
Добавим к обеим частям неравенства.
Этап 2.2
Добавим и .
Этап 3
Преобразуем неравенство в уравнение.
Этап 4
Используем формулу для нахождения корней квадратного уравнения.
Этап 5
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 6
Упростим.
Нажмите для увеличения количества этапов...
Этап 6.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 6.1.1
Возведем в степень .
Этап 6.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 6.1.2.1
Умножим на .
Этап 6.1.2.2
Умножим на .
Этап 6.1.3
Вычтем из .
Этап 6.1.4
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 6.1.4.1
Вынесем множитель из .
Этап 6.1.4.2
Перепишем в виде .
Этап 6.1.5
Вынесем члены из-под знака корня.
Этап 6.2
Умножим на .
Этап 6.3
Упростим .
Этап 7
Упростим выражение, которое нужно решить для части значения .
Нажмите для увеличения количества этапов...
Этап 7.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 7.1.1
Возведем в степень .
Этап 7.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 7.1.2.1
Умножим на .
Этап 7.1.2.2
Умножим на .
Этап 7.1.3
Вычтем из .
Этап 7.1.4
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 7.1.4.1
Вынесем множитель из .
Этап 7.1.4.2
Перепишем в виде .
Этап 7.1.5
Вынесем члены из-под знака корня.
Этап 7.2
Умножим на .
Этап 7.3
Упростим .
Этап 7.4
Заменим на .
Этап 8
Упростим выражение, которое нужно решить для части значения .
Нажмите для увеличения количества этапов...
Этап 8.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 8.1.1
Возведем в степень .
Этап 8.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 8.1.2.1
Умножим на .
Этап 8.1.2.2
Умножим на .
Этап 8.1.3
Вычтем из .
Этап 8.1.4
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 8.1.4.1
Вынесем множитель из .
Этап 8.1.4.2
Перепишем в виде .
Этап 8.1.5
Вынесем члены из-под знака корня.
Этап 8.2
Умножим на .
Этап 8.3
Упростим .
Этап 8.4
Заменим на .
Этап 9
Объединим решения.
Этап 10
Используем каждый корень для создания контрольных интервалов.
Этап 11
Выберем тестовое значение из каждого интервала и подставим это значение в исходное неравенство для определения интервалов, удовлетворяющих неравенству.
Нажмите для увеличения количества этапов...
Этап 11.1
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Нажмите для увеличения количества этапов...
Этап 11.1.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 11.1.2
Заменим на в исходном неравенстве.
Этап 11.1.3
Левая часть больше правой части , значит, данное утверждение всегда истинно.
True
True
Этап 11.2
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Нажмите для увеличения количества этапов...
Этап 11.2.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 11.2.2
Заменим на в исходном неравенстве.
Этап 11.2.3
Левая часть не больше правой части , значит, данное утверждение ложно.
False
False
Этап 11.3
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Нажмите для увеличения количества этапов...
Этап 11.3.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 11.3.2
Заменим на в исходном неравенстве.
Этап 11.3.3
Левая часть больше правой части , значит, данное утверждение всегда истинно.
True
True
Этап 11.4
Сравним интервалы, чтобы определить, какие из них удовлетворяют исходному неравенству.
Истина
Ложь
Истина
Истина
Ложь
Истина
Этап 12
Решение состоит из всех истинных интервалов.
или
Этап 13
Преобразуем неравенство в интервальное представление.
Этап 14