Конечная математика Примеры

Определить корни/нули с помощью проверки рациональных корней 4r^2+20r+25
Этап 1
Если у многочленной функции целые коэффициенты, то каждый рациональный ноль будет иметь вид , где  — делитель константы, а  — делитель старшего коэффициента.
Этап 2
Найдем все комбинации . Это ― возможные корни многочлена.
Этап 3
Подставим возможные корни поочередно в многочлен, чтобы найти фактические корни. Упростим и убедимся, что это значение равно , значит, это корень.
Этап 4
Упростим выражение. В этом случае выражение равно , поэтому является корнем многочлена.
Нажмите для увеличения количества этапов...
Этап 4.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 4.1.1
Применим правило степени для распределения показателей.
Нажмите для увеличения количества этапов...
Этап 4.1.1.1
Применим правило умножения к .
Этап 4.1.1.2
Применим правило умножения к .
Этап 4.1.2
Возведем в степень .
Этап 4.1.3
Умножим на .
Этап 4.1.4
Возведем в степень .
Этап 4.1.5
Возведем в степень .
Этап 4.1.6
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.1.6.1
Сократим общий множитель.
Этап 4.1.6.2
Перепишем это выражение.
Этап 4.1.7
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.1.7.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 4.1.7.2
Вынесем множитель из .
Этап 4.1.7.3
Сократим общий множитель.
Этап 4.1.7.4
Перепишем это выражение.
Этап 4.1.8
Умножим на .
Этап 4.2
Упростим путем сложения и вычитания.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Вычтем из .
Этап 4.2.2
Добавим и .
Этап 5
Поскольку  — известный корень, разделим многочлен на , чтобы найти частное многочленов. Этот многочлен можно будет использовать, чтобы найти оставшиеся корни.
Этап 6
Затем найдем корни оставшегося многочлена. Порядок многочлена был уменьшен на .
Нажмите для увеличения количества этапов...
Этап 6.1
Поместим числа, представляющие делитель и делимое, в конфигурацию для деления.
  
Этап 6.2
Первое число в делимом помещается в первую позицию области результата (ниже горизонтальной линии).
  
Этап 6.3
Умножим последний элемент в области результата на делитель и запишем их произведение под следующим членом делимого .
  
Этап 6.4
Сложим результат умножения и делимое число и поместим результат в следующую позицию в строке результатов.
  
Этап 6.5
Умножим последний элемент в области результата на делитель и запишем их произведение под следующим членом делимого .
 
Этап 6.6
Сложим результат умножения и делимое число и поместим результат в следующую позицию в строке результатов.
 
Этап 6.7
Все числа, кроме последнего, становятся коэффициентами фактор-многочлена. Последнее значение в строке результатов — это остаток.
Этап 6.8
Упростим частное многочленов.
Этап 7
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 7.1
Вынесем множитель из .
Этап 7.2
Вынесем множитель из .
Этап 7.3
Вынесем множитель из .
Этап 8
Разложим на множители, используя правило полных квадратов.
Нажмите для увеличения количества этапов...
Этап 8.1
Перепишем в виде .
Этап 8.2
Перепишем в виде .
Этап 8.3
Проверим, чтобы средний член был равен удвоенному произведению корней из первого и третьего членов.
Этап 8.4
Перепишем многочлен.
Этап 8.5
Разложим на множители, используя правило выделения полного квадрата из квадратного трехчлена , где и .
Этап 9
Приравняем к .
Этап 10
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 10.1
Вычтем из обеих частей уравнения.
Этап 10.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 10.2.1
Разделим каждый член на .
Этап 10.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 10.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 10.2.2.1.1
Сократим общий множитель.
Этап 10.2.2.1.2
Разделим на .
Этап 10.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 10.2.3.1
Вынесем знак минуса перед дробью.
Этап 11