Конечная математика Примеры

Преобразовать к интервальному виду |(6y+4)/2|+8>2
Этап 1
Запишем в виде кусочной функции.
Нажмите для увеличения количества этапов...
Этап 1.1
Чтобы определить интервал для первого куска, найдем, на каком участке абсолютное значение неотрицательно.
Этап 1.2
Решим неравенство.
Нажмите для увеличения количества этапов...
Этап 1.2.1
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 1.2.1.1
Вынесем множитель из .
Этап 1.2.1.2
Вынесем множитель из .
Этап 1.2.1.3
Вынесем множитель из .
Этап 1.2.1.4
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 1.2.1.4.1
Вынесем множитель из .
Этап 1.2.1.4.2
Сократим общий множитель.
Этап 1.2.1.4.3
Перепишем это выражение.
Этап 1.2.1.4.4
Разделим на .
Этап 1.2.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.2.2.1
Вычтем из обеих частей неравенства.
Этап 1.2.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 1.2.2.2.1
Разделим каждый член на .
Этап 1.2.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.2.2.2.2.1.1
Сократим общий множитель.
Этап 1.2.2.2.2.1.2
Разделим на .
Этап 1.2.2.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.2.2.3.1
Вынесем знак минуса перед дробью.
Этап 1.3
В части, где принимает неотрицательные значения, исключим абсолютное значение.
Этап 1.4
Чтобы определить интервал для второго куска, найдем, на каком участке абсолютное значение отрицательно.
Этап 1.5
Решим неравенство.
Нажмите для увеличения количества этапов...
Этап 1.5.1
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 1.5.1.1
Вынесем множитель из .
Этап 1.5.1.2
Вынесем множитель из .
Этап 1.5.1.3
Вынесем множитель из .
Этап 1.5.1.4
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 1.5.1.4.1
Вынесем множитель из .
Этап 1.5.1.4.2
Сократим общий множитель.
Этап 1.5.1.4.3
Перепишем это выражение.
Этап 1.5.1.4.4
Разделим на .
Этап 1.5.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.5.2.1
Вычтем из обеих частей неравенства.
Этап 1.5.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 1.5.2.2.1
Разделим каждый член на .
Этап 1.5.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.5.2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.5.2.2.2.1.1
Сократим общий множитель.
Этап 1.5.2.2.2.1.2
Разделим на .
Этап 1.5.2.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.5.2.2.3.1
Вынесем знак минуса перед дробью.
Этап 1.6
В части, где принимает отрицательные значения, исключим абсолютное значение и умножим на .
Этап 1.7
Запишем в виде кусочной функции.
Этап 1.8
Упростим .
Нажмите для увеличения количества этапов...
Этап 1.8.1
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 1.8.1.1
Вынесем множитель из .
Этап 1.8.1.2
Вынесем множитель из .
Этап 1.8.1.3
Вынесем множитель из .
Этап 1.8.1.4
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 1.8.1.4.1
Вынесем множитель из .
Этап 1.8.1.4.2
Сократим общий множитель.
Этап 1.8.1.4.3
Перепишем это выражение.
Этап 1.8.1.4.4
Разделим на .
Этап 1.8.2
Добавим и .
Этап 1.9
Упростим .
Нажмите для увеличения количества этапов...
Этап 1.9.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.9.1.1
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 1.9.1.1.1
Вынесем множитель из .
Этап 1.9.1.1.2
Вынесем множитель из .
Этап 1.9.1.1.3
Вынесем множитель из .
Этап 1.9.1.1.4
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 1.9.1.1.4.1
Вынесем множитель из .
Этап 1.9.1.1.4.2
Сократим общий множитель.
Этап 1.9.1.1.4.3
Перепишем это выражение.
Этап 1.9.1.1.4.4
Разделим на .
Этап 1.9.1.2
Применим свойство дистрибутивности.
Этап 1.9.1.3
Умножим на .
Этап 1.9.1.4
Умножим на .
Этап 1.9.2
Добавим и .
Этап 2
Решим , когда .
Нажмите для увеличения количества этапов...
Этап 2.1
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.1.1
Перенесем все члены без в правую часть неравенства.
Нажмите для увеличения количества этапов...
Этап 2.1.1.1
Вычтем из обеих частей неравенства.
Этап 2.1.1.2
Вычтем из .
Этап 2.1.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 2.1.2.1
Разделим каждый член на .
Этап 2.1.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.1.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.1.2.2.1.1
Сократим общий множитель.
Этап 2.1.2.2.1.2
Разделим на .
Этап 2.1.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.1.2.3.1
Вынесем знак минуса перед дробью.
Этап 2.2
Найдем пересечение и .
Этап 3
Решим , когда .
Нажмите для увеличения количества этапов...
Этап 3.1
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.1.1
Перенесем все члены без в правую часть неравенства.
Нажмите для увеличения количества этапов...
Этап 3.1.1.1
Вычтем из обеих частей неравенства.
Этап 3.1.1.2
Вычтем из .
Этап 3.1.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 3.1.2.1
Разделим каждый член на . При умножении или делении обеих частей неравенства на отрицательное значение заменим знак неравенства на противоположный.
Этап 3.1.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.1.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.1.2.2.1.1
Сократим общий множитель.
Этап 3.1.2.2.1.2
Разделим на .
Этап 3.1.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.1.2.3.1
Деление двух отрицательных значений дает положительное значение.
Этап 3.2
Найдем пересечение и .
Этап 4
Найдем объединение решений.
Все вещественные числа
Этап 5
Преобразуем неравенство в интервальное представление.
Этап 6