Конечная математика Примеры

Risolvere per x квадратный корень из x-4-2/( квадратный корень из x-4)=1
Этап 1
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.1
Найдем НОК знаменателей членов уравнения.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 1.1.2
НОК единицы и любого выражения есть это выражение.
Этап 1.2
Каждый член в умножим на , чтобы убрать дроби.
Нажмите для увеличения количества этапов...
Этап 1.2.1
Умножим каждый член на .
Этап 1.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.2.2.1.1
Умножим на .
Этап 1.2.2.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.2.2.1.2.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 1.2.2.1.2.2
Сократим общий множитель.
Этап 1.2.2.1.2.3
Перепишем это выражение.
Этап 1.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.3.1
Умножим на .
Этап 1.3
Решим уравнение.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Вычтем из обеих частей уравнения.
Этап 1.3.2
Разложим на множители, используя метод группировки.
Нажмите для увеличения количества этапов...
Этап 1.3.2.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 1.3.2.2
Запишем разложение на множители, используя данные целые числа.
Этап 1.3.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 1.3.4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.3.4.1
Приравняем к .
Этап 1.3.4.2
Добавим к обеим частям уравнения.
Этап 1.3.5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.3.5.1
Приравняем к .
Этап 1.3.5.2
Вычтем из обеих частей уравнения.
Этап 1.3.6
Окончательным решением являются все значения, при которых верно.
Этап 2
Решим относительно в .
Нажмите для увеличения количества этапов...
Этап 2.1
Чтобы избавиться от радикала в левой части уравнения, возведем обе части уравнения в квадрат.
Этап 2.2
Упростим каждую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 2.2.1
С помощью запишем в виде .
Этап 2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.2.2.1.1
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 2.2.2.1.1.1
Применим правило степени и перемножим показатели, .
Этап 2.2.2.1.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.2.2.1.1.2.1
Сократим общий множитель.
Этап 2.2.2.1.1.2.2
Перепишем это выражение.
Этап 2.2.2.1.2
Упростим.
Этап 2.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.3.1
Возведем в степень .
Этап 2.3
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Добавим к обеим частям уравнения.
Этап 2.3.2
Добавим и .
Этап 3
Решим относительно в .
Нажмите для увеличения количества этапов...
Этап 3.1
Чтобы избавиться от радикала в левой части уравнения, возведем обе части уравнения в квадрат.
Этап 3.2
Упростим каждую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 3.2.1
С помощью запишем в виде .
Этап 3.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.2.2.1.1
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 3.2.2.1.1.1
Применим правило степени и перемножим показатели, .
Этап 3.2.2.1.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.2.1.1.2.1
Сократим общий множитель.
Этап 3.2.2.1.1.2.2
Перепишем это выражение.
Этап 3.2.2.1.2
Упростим.
Этап 3.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.3.1
Возведем в степень .
Этап 3.3
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Добавим к обеим частям уравнения.
Этап 3.3.2
Добавим и .
Этап 4
Перечислим все решения.
Этап 5
Исключим решения, которые не делают истинным.