Введите задачу...
Конечная математика Примеры
Этап 1
Этап 1.1
Вычтем из .
Этап 1.2
Упростим.
Этап 2
Этап 2.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 2.2
Since contains both numbers and variables, there are four steps to find the LCM. Find LCM for the numeric, variable, and compound variable parts. Then, multiply them all together.
Этапы поиска НОК для :
1. Найдем НОК для числовой части .
2. Найдем НОК для переменной части .
3. Найдем НОК для составной переменной части .
4. Перемножим все НОК.
Этап 2.3
НОК — это наименьшее положительное число, на которое все числа делятся без остатка.
1. Перечислим простые множители каждого числа.
2. Применим каждый множитель наибольшее количество раз, которое он встречается в любом из чисел.
Этап 2.4
Число не является простым числом, поскольку оно имеет только один положительный делитель ― само число.
Не является простым
Этап 2.5
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 2.6
Множителем является само значение .
встречается раз.
Этап 2.7
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 2.8
Множителем является само значение .
встречается раз.
Этап 2.9
Множителем является само значение .
встречается раз.
Этап 2.10
НОК представляет собой произведение всех множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 2.11
Наименьшее общее кратное некоторых чисел равно наименьшему числу, на которое делятся эти числа.
Этап 3
Этап 3.1
Умножим каждый член на .
Этап 3.2
Упростим левую часть.
Этап 3.2.1
Упростим каждый член.
Этап 3.2.1.1
Сократим общий множитель .
Этап 3.2.1.1.1
Вынесем множитель из .
Этап 3.2.1.1.2
Сократим общий множитель.
Этап 3.2.1.1.3
Перепишем это выражение.
Этап 3.2.1.2
Применим свойство дистрибутивности.
Этап 3.2.1.3
Умножим на .
Этап 3.2.1.4
Умножим на .
Этап 3.2.1.5
Применим свойство дистрибутивности.
Этап 3.2.1.6
Сократим общий множитель .
Этап 3.2.1.6.1
Вынесем множитель из .
Этап 3.2.1.6.2
Сократим общий множитель.
Этап 3.2.1.6.3
Перепишем это выражение.
Этап 3.2.1.7
Применим свойство дистрибутивности.
Этап 3.2.1.8
Умножим на .
Этап 3.2.1.9
Перенесем влево от .
Этап 3.2.1.10
Перепишем в виде .
Этап 3.2.1.11
Применим свойство дистрибутивности.
Этап 3.2.1.12
Умножим на .
Этап 3.2.2
Упростим путем добавления членов.
Этап 3.2.2.1
Добавим и .
Этап 3.2.2.2
Вычтем из .
Этап 3.3
Упростим правую часть.
Этап 3.3.1
Сократим общий множитель .
Этап 3.3.1.1
Вынесем множитель из .
Этап 3.3.1.2
Сократим общий множитель.
Этап 3.3.1.3
Перепишем это выражение.
Этап 3.3.2
Развернем , используя метод «первые-внешние-внутренние-последние».
Этап 3.3.2.1
Применим свойство дистрибутивности.
Этап 3.3.2.2
Применим свойство дистрибутивности.
Этап 3.3.2.3
Применим свойство дистрибутивности.
Этап 3.3.3
Упростим члены.
Этап 3.3.3.1
Объединим противоположные члены в .
Этап 3.3.3.1.1
Изменим порядок множителей в членах и .
Этап 3.3.3.1.2
Вычтем из .
Этап 3.3.3.1.3
Добавим и .
Этап 3.3.3.2
Упростим каждый член.
Этап 3.3.3.2.1
Умножим на .
Этап 3.3.3.2.2
Умножим на .
Этап 3.3.3.3
Упростим путем перемножения.
Этап 3.3.3.3.1
Применим свойство дистрибутивности.
Этап 3.3.3.3.2
Умножим на .
Этап 4
Этап 4.1
Перенесем все члены с в левую часть уравнения.
Этап 4.1.1
Вычтем из обеих частей уравнения.
Этап 4.1.2
Вычтем из .
Этап 4.2
Добавим к обеим частям уравнения.
Этап 4.3
Используем формулу для нахождения корней квадратного уравнения.
Этап 4.4
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 4.5
Упростим.
Этап 4.5.1
Упростим числитель.
Этап 4.5.1.1
Возведем в степень .
Этап 4.5.1.2
Умножим .
Этап 4.5.1.2.1
Умножим на .
Этап 4.5.1.2.2
Умножим на .
Этап 4.5.1.3
Вычтем из .
Этап 4.5.1.4
Перепишем в виде .
Этап 4.5.1.5
Перепишем в виде .
Этап 4.5.1.6
Перепишем в виде .
Этап 4.5.2
Умножим на .
Этап 4.6
Окончательный ответ является комбинацией обоих решений.