Введите задачу...
Конечная математика Примеры
Этап 1
Вычтем из обеих частей уравнения.
Этап 2
Вычтем из обеих частей уравнения.
Этап 3
Этап 3.1
Вынесем наибольший общий делитель из каждой группы.
Этап 3.1.1
Сгруппируем первые два члена и последние два члена.
Этап 3.1.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 3.2
Разложим многочлен, вынеся наибольший общий делитель .
Этап 3.3
Перепишем в виде .
Этап 3.4
Разложим на множители.
Этап 3.4.1
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 3.4.2
Избавимся от ненужных скобок.
Этап 4
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 5
Этап 5.1
Приравняем к .
Этап 5.2
Решим относительно .
Этап 5.2.1
Вычтем из обеих частей уравнения.
Этап 5.2.2
Разделим каждый член на и упростим.
Этап 5.2.2.1
Разделим каждый член на .
Этап 5.2.2.2
Упростим левую часть.
Этап 5.2.2.2.1
Сократим общий множитель .
Этап 5.2.2.2.1.1
Сократим общий множитель.
Этап 5.2.2.2.1.2
Разделим на .
Этап 5.2.2.3
Упростим правую часть.
Этап 5.2.2.3.1
Вынесем знак минуса перед дробью.
Этап 6
Этап 6.1
Приравняем к .
Этап 6.2
Вычтем из обеих частей уравнения.
Этап 7
Этап 7.1
Приравняем к .
Этап 7.2
Добавим к обеим частям уравнения.
Этап 8
Окончательным решением являются все значения, при которых верно.
Этап 9
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: