Конечная математика Примеры

Этап 1
Найдем НОК знаменателей членов уравнения.
Нажмите для увеличения количества этапов...
Этап 1.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 1.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
Этап 1.3
НОК — это наименьшее положительное число, на которое все числа делятся без остатка.
1. Перечислим простые множители каждого числа.
2. Применим каждый множитель наибольшее количество раз, которое он встречается в любом из чисел.
Этап 1.4
Число не является простым числом, поскольку оно имеет только один положительный делитель ― само число.
Не является простым
Этап 1.5
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 1.6
Множителем является само значение .
встречается раз.
Этап 1.7
Множители  — , то есть , умноженный сам на себя раз.
встречается раз.
Этап 1.8
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 1.9
Умножим на .
Этап 2
Каждый член в умножим на , чтобы убрать дроби.
Нажмите для увеличения количества этапов...
Этап 2.1
Умножим каждый член на .
Этап 2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.2.1.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.2.1.1.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 2.2.1.1.2
Вынесем множитель из .
Этап 2.2.1.1.3
Сократим общий множитель.
Этап 2.2.1.1.4
Перепишем это выражение.
Этап 2.2.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.2.1.2.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 2.2.1.2.2
Сократим общий множитель.
Этап 2.2.1.2.3
Перепишем это выражение.
Этап 2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Умножим на .
Этап 3
Решим уравнение.
Нажмите для увеличения количества этапов...
Этап 3.1
Разложим на множители методом группировки
Нажмите для увеличения количества этапов...
Этап 3.1.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Нажмите для увеличения количества этапов...
Этап 3.1.1.1
Вынесем множитель из .
Этап 3.1.1.2
Запишем как плюс
Этап 3.1.1.3
Применим свойство дистрибутивности.
Этап 3.1.1.4
Умножим на .
Этап 3.1.2
Вынесем наибольший общий делитель из каждой группы.
Нажмите для увеличения количества этапов...
Этап 3.1.2.1
Сгруппируем первые два члена и последние два члена.
Этап 3.1.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 3.1.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 3.2
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 3.3
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.3.1
Приравняем к .
Этап 3.3.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.3.2.1
Вычтем из обеих частей уравнения.
Этап 3.3.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 3.3.2.2.1
Разделим каждый член на .
Этап 3.3.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.3.2.2.2.1.1
Сократим общий множитель.
Этап 3.3.2.2.2.1.2
Разделим на .
Этап 3.3.2.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.2.2.3.1
Вынесем знак минуса перед дробью.
Этап 3.4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.4.1
Приравняем к .
Этап 3.4.2
Добавим к обеим частям уравнения.
Этап 3.5
Окончательным решением являются все значения, при которых верно.
Этап 4
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: