Конечная математика Примеры

Risolvere per n 98000=29000.00((1-(1.067)^(-n))/0.067)
Этап 1
Перепишем уравнение в виде .
Этап 2
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.1
Перепишем в виде .
Этап 2.2
Вынесем множитель из .
Этап 2.3
Вынесем множитель из .
Этап 2.4
Вынесем множитель из .
Этап 2.5
Разделим дроби.
Этап 2.6
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 2.6.1
Разделим на .
Этап 2.6.2
Разделим на .
Этап 2.7
Применим свойство дистрибутивности.
Этап 2.8
Умножим.
Нажмите для увеличения количества этапов...
Этап 2.8.1
Умножим на .
Этап 2.8.2
Умножим на .
Этап 2.9
Применим свойство дистрибутивности.
Этап 2.10
Умножим.
Нажмите для увеличения количества этапов...
Этап 2.10.1
Умножим на .
Этап 2.10.2
Умножим на .
Этап 3
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 3.1
Вычтем из обеих частей уравнения.
Этап 3.2
Вычтем из .
Этап 4
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 4.1
Разделим каждый член на .
Этап 4.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.2.1.1
Сократим общий множитель.
Этап 4.2.1.2
Разделим на .
Этап 4.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 4.3.1
Разделим на .
Этап 5
Возьмем натуральный логарифм обеих частей уравнения, чтобы удалить переменную из показателя степени.
Этап 6
Развернем , вынося из логарифма.
Этап 7
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 7.1
Разделим каждый член на .
Этап 7.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 7.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 7.2.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 7.2.2.1
Сократим общий множитель.
Этап 7.2.2.2
Разделим на .
Этап 7.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 7.3.1
Вынесем знак минуса перед дробью.
Этап 8
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: