Конечная математика Примеры

Risolvere per s 108=10 логарифм от s/(10^-12)
Этап 1
Перепишем уравнение в виде .
Этап 2
Перенесем в числитель, используя правило отрицательных степеней .
Этап 3
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 3.1
Разделим каждый член на .
Этап 3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.1.1
Сократим общий множитель.
Этап 3.2.1.2
Разделим на .
Этап 3.2.2
Перепишем в виде .
Этап 3.2.3
Используем основные свойства логарифмов, чтобы вынести из степени.
Этап 3.2.4
Логарифм по основанию равен .
Этап 3.2.5
Умножим на .
Этап 3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 3.3.1.1
Вынесем множитель из .
Этап 3.3.1.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 3.3.1.2.1
Вынесем множитель из .
Этап 3.3.1.2.2
Сократим общий множитель.
Этап 3.3.1.2.3
Перепишем это выражение.
Этап 4
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 4.1
Вычтем из обеих частей уравнения.
Этап 4.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 4.3
Объединим и .
Этап 4.4
Объединим числители над общим знаменателем.
Этап 4.5
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 4.5.1
Умножим на .
Этап 4.5.2
Вычтем из .
Этап 4.6
Вынесем знак минуса перед дробью.
Этап 5
Перепишем в экспоненциальной форме, используя определение логарифма. Если и  — положительные вещественные числа и , то эквивалентно .
Этап 6
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.1
Перепишем уравнение в виде .
Этап 6.2
Перепишем выражение, используя правило отрицательных степеней .
Этап 7
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: