Конечная математика Примеры

Этап 1
Перепишем уравнение в виде .
Этап 2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 2.1
Разделим каждый член на .
Этап 2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.2.1.1
Сократим общий множитель.
Этап 2.2.1.2
Разделим на .
Этап 3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 4
Перепишем в виде .
Этап 5
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 5.1
Сначала с помощью положительного значения найдем первое решение.
Этап 5.2
Вычтем из обеих частей уравнения.
Этап 5.3
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 5.3.1
Разделим каждый член на .
Этап 5.3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 5.3.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.3.2.1.1
Сократим общий множитель.
Этап 5.3.2.1.2
Разделим на .
Этап 5.3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 5.3.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 5.3.3.1.1
Умножим числитель на величину, обратную знаменателю.
Этап 5.3.3.1.2
Умножим на .
Этап 5.3.3.1.3
Перенесем влево от .
Этап 5.3.3.1.4
Умножим на .
Этап 5.3.3.1.5
Объединим и упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 5.3.3.1.5.1
Умножим на .
Этап 5.3.3.1.5.2
Перенесем .
Этап 5.3.3.1.5.3
Возведем в степень .
Этап 5.3.3.1.5.4
Применим правило степени для объединения показателей.
Этап 5.3.3.1.5.5
Добавим и .
Этап 5.3.3.1.5.6
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 5.3.3.1.5.6.1
С помощью запишем в виде .
Этап 5.3.3.1.5.6.2
Применим правило степени и перемножим показатели, .
Этап 5.3.3.1.5.6.3
Объединим и .
Этап 5.3.3.1.5.6.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.3.3.1.5.6.4.1
Сократим общий множитель.
Этап 5.3.3.1.5.6.4.2
Перепишем это выражение.
Этап 5.3.3.1.5.6.5
Найдем экспоненту.
Этап 5.3.3.1.6
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 5.3.3.1.6.1
Перепишем в виде .
Этап 5.3.3.1.6.2
Возведем в степень .
Этап 5.3.3.1.7
Умножим на .
Этап 5.3.3.1.8
Объединим, используя правило умножения для радикалов.
Этап 5.3.3.1.9
Вынесем знак минуса перед дробью.
Этап 5.3.3.2
Изменим порядок множителей в .
Этап 5.4
Затем, используя отрицательное значение , найдем второе решение.
Этап 5.5
Вычтем из обеих частей уравнения.
Этап 5.6
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 5.6.1
Разделим каждый член на .
Этап 5.6.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 5.6.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.6.2.1.1
Сократим общий множитель.
Этап 5.6.2.1.2
Разделим на .
Этап 5.6.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 5.6.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 5.6.3.1.1
Умножим числитель на величину, обратную знаменателю.
Этап 5.6.3.1.2
Умножим на .
Этап 5.6.3.1.3
Умножим на .
Этап 5.6.3.1.4
Объединим и упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 5.6.3.1.4.1
Умножим на .
Этап 5.6.3.1.4.2
Перенесем .
Этап 5.6.3.1.4.3
Возведем в степень .
Этап 5.6.3.1.4.4
Применим правило степени для объединения показателей.
Этап 5.6.3.1.4.5
Добавим и .
Этап 5.6.3.1.4.6
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 5.6.3.1.4.6.1
С помощью запишем в виде .
Этап 5.6.3.1.4.6.2
Применим правило степени и перемножим показатели, .
Этап 5.6.3.1.4.6.3
Объединим и .
Этап 5.6.3.1.4.6.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.6.3.1.4.6.4.1
Сократим общий множитель.
Этап 5.6.3.1.4.6.4.2
Перепишем это выражение.
Этап 5.6.3.1.4.6.5
Найдем экспоненту.
Этап 5.6.3.1.5
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 5.6.3.1.5.1
Перепишем в виде .
Этап 5.6.3.1.5.2
Возведем в степень .
Этап 5.6.3.1.6
Умножим на .
Этап 5.6.3.1.7
Объединим, используя правило умножения для радикалов.
Этап 5.6.3.1.8
Вынесем знак минуса перед дробью.
Этап 5.6.3.2
Изменим порядок множителей в .
Этап 5.7
Полное решение является результатом как положительных, так и отрицательных частей решения.