Конечная математика Примеры

Найти область определения и область значения квадратный корень из 4-x+ квадратный корень из x^2-9=y
Этап 1
Перепишем уравнение в виде .
Этап 2
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.1
Перепишем в виде .
Этап 2.2
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 3
Зададим подкоренное выражение в большим или равным , чтобы узнать, где определено данное выражение.
Этап 4
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.1
Вычтем из обеих частей неравенства.
Этап 4.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Разделим каждый член на . При умножении или делении обеих частей неравенства на отрицательное значение заменим знак неравенства на противоположный.
Этап 4.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 4.2.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 4.2.2.2
Разделим на .
Этап 4.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 4.2.3.1
Разделим на .
Этап 5
Зададим подкоренное выражение в большим или равным , чтобы узнать, где определено данное выражение.
Этап 6
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.1
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 6.2
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.2.1
Приравняем к .
Этап 6.2.2
Вычтем из обеих частей уравнения.
Этап 6.3
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.3.1
Приравняем к .
Этап 6.3.2
Добавим к обеим частям уравнения.
Этап 6.4
Окончательным решением являются все значения, при которых верно.
Этап 6.5
Используем каждый корень для создания контрольных интервалов.
Этап 6.6
Выберем тестовое значение из каждого интервала и подставим это значение в исходное неравенство для определения интервалов, удовлетворяющих неравенству.
Нажмите для увеличения количества этапов...
Этап 6.6.1
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Нажмите для увеличения количества этапов...
Этап 6.6.1.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 6.6.1.2
Заменим на в исходном неравенстве.
Этап 6.6.1.3
Левая часть больше правой части , значит, данное утверждение всегда истинно.
True
True
Этап 6.6.2
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Нажмите для увеличения количества этапов...
Этап 6.6.2.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 6.6.2.2
Заменим на в исходном неравенстве.
Этап 6.6.2.3
Левая часть меньше правой части , значит, данное утверждение ложно.
False
False
Этап 6.6.3
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Нажмите для увеличения количества этапов...
Этап 6.6.3.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 6.6.3.2
Заменим на в исходном неравенстве.
Этап 6.6.3.3
Левая часть больше правой части , значит, данное утверждение всегда истинно.
True
True
Этап 6.6.4
Сравним интервалы, чтобы определить, какие из них удовлетворяют исходному неравенству.
Истина
Ложь
Истина
Истина
Ложь
Истина
Этап 6.7
Решение состоит из всех истинных интервалов.
или
или
Этап 7
Область определения ― это все значения , при которых выражение определено.
Интервальное представление:
Обозначение построения множества:
Этап 8
Множество значений ― это множество всех допустимых значений . Используем график, чтобы найти множество значений.
Нет решения
Этап 9
Определим область определения и множество значений.
Нет решения
Этап 10