Конечная математика Примеры

Решить матричное уравнение [[3,-2],[1,-1]][[x],[y]]=[[6],[4]]
Этап 1
Умножим .
Нажмите для увеличения количества этапов...
Этап 1.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is and the second matrix is .
Этап 1.2
Умножим каждую строку первой матрицы на каждый столбец второй матрицы.
Этап 1.3
Упростим каждый элемент матрицы путем перемножения всех выражений.
Этап 2
Write as a linear system of equations.
Этап 3
Решим систему уравнений.
Нажмите для увеличения количества этапов...
Этап 3.1
Добавим к обеим частям уравнения.
Этап 3.2
Заменим все вхождения на во всех уравнениях.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Заменим все вхождения в на .
Этап 3.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.2.2.1.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.2.2.1.1.1
Применим свойство дистрибутивности.
Этап 3.2.2.1.1.2
Умножим на .
Этап 3.2.2.1.2
Вычтем из .
Этап 3.3
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Вычтем из обеих частей уравнения.
Этап 3.3.2
Вычтем из .
Этап 3.4
Заменим все вхождения на во всех уравнениях.
Нажмите для увеличения количества этапов...
Этап 3.4.1
Заменим все вхождения в на .
Этап 3.4.2
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.4.2.1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.4.2.1.1
Избавимся от скобок.
Этап 3.4.2.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.4.2.2.1
Вычтем из .
Этап 3.5
Перечислим все решения.