Конечная математика Примеры

Доказать, что является корнем на заданном интервале f(x)=x^3+x^2-x-2 , [-2,1]
,
Этап 1
Теорема о промежуточном значении утверждает, что если является непрерывной функцией с действительными значениями на интервале , а число лежит между и , то существует такое число на интервале , что .
Этап 2
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Интервальное представление:
Обозначение построения множества:
Этап 3
Вычислим .
Нажмите для увеличения количества этапов...
Этап 3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.1.1
Возведем в степень .
Этап 3.1.2
Возведем в степень .
Этап 3.1.3
Умножим на .
Этап 3.2
Упростим путем сложения и вычитания.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Добавим и .
Этап 3.2.2
Добавим и .
Этап 3.2.3
Вычтем из .
Этап 4
Вычислим .
Нажмите для увеличения количества этапов...
Этап 4.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 4.1.1
Единица в любой степени равна единице.
Этап 4.1.2
Единица в любой степени равна единице.
Этап 4.1.3
Умножим на .
Этап 4.2
Упростим путем сложения и вычитания.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Добавим и .
Этап 4.2.2
Вычтем из .
Этап 4.2.3
Вычтем из .
Этап 5
не находится в интервале .
Корни на этом интервале отсутствуют.
Этап 6