Конечная математика Примеры

Доказать, что является корнем на заданном интервале y=64-x^2 , [-8,8]
,
Этап 1
Изменим порядок и .
Этап 2
Теорема о промежуточном значении утверждает, что если является непрерывной функцией с действительными значениями на интервале , а число лежит между и , то существует такое число на интервале , что .
Этап 3
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Интервальное представление:
Обозначение построения множества:
Этап 4
Вычислим .
Нажмите для увеличения количества этапов...
Этап 4.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 4.1.1
Возведем в степень .
Этап 4.1.2
Умножим на .
Этап 4.2
Добавим и .
Этап 5
Вычислим .
Нажмите для увеличения количества этапов...
Этап 5.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 5.1.1
Возведем в степень .
Этап 5.1.2
Умножим на .
Этап 5.2
Добавим и .
Этап 6
Так как находится в интервале , решим уравнение в отношении , приравняв к в .
Нажмите для увеличения количества этапов...
Этап 6.1
Перепишем уравнение в виде .
Этап 6.2
Вычтем из обеих частей уравнения.
Этап 6.3
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 6.3.1
Разделим каждый член на .
Этап 6.3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 6.3.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 6.3.2.2
Разделим на .
Этап 6.3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 6.3.3.1
Разделим на .
Этап 6.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 6.5
Упростим .
Нажмите для увеличения количества этапов...
Этап 6.5.1
Перепишем в виде .
Этап 6.5.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 6.6
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 6.6.1
Сначала с помощью положительного значения найдем первое решение.
Этап 6.6.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 6.6.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 7
Теорема о промежуточном значении утверждает, что на интервале существует корень , поскольку является непрерывной функцией на .
Корни на интервале расположены в .
Этап 8