Конечная математика Примеры

Этап 1
Перепишем уравнение в виде .
Этап 2
Перепишем это уравнение абсолютного значения в виде четырех уравнений без знаков модуля.
Этап 3
После упрощения остается решить только два уникальных уравнения.
Этап 4
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.1
Поскольку находится в правой части уравнения, поменяем стороны так, чтобы оно оказалось в левой части уравнения.
Этап 4.2
Перенесем все члены с в левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Вычтем из обеих частей уравнения.
Этап 4.2.2
Вычтем из .
Этап 4.3
Добавим к обеим частям уравнения.
Этап 4.4
Добавим и .
Этап 4.5
Разложим на множители, используя метод группировки.
Нажмите для увеличения количества этапов...
Этап 4.5.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 4.5.2
Запишем разложение на множители, используя данные целые числа.
Этап 4.6
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 4.7
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.7.1
Приравняем к .
Этап 4.7.2
Добавим к обеим частям уравнения.
Этап 4.8
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.8.1
Приравняем к .
Этап 4.8.2
Вычтем из обеих частей уравнения.
Этап 4.9
Окончательным решением являются все значения, при которых верно.
Этап 5
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.1
Поскольку находится в правой части уравнения, поменяем стороны так, чтобы оно оказалось в левой части уравнения.
Этап 5.2
Упростим .
Нажмите для увеличения количества этапов...
Этап 5.2.1
Перепишем.
Этап 5.2.2
Упростим путем добавления нулей.
Этап 5.2.3
Применим свойство дистрибутивности.
Этап 5.2.4
Упростим.
Нажмите для увеличения количества этапов...
Этап 5.2.4.1
Умножим на .
Этап 5.2.4.2
Умножим на .
Этап 5.3
Перенесем все члены с в левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 5.3.1
Вычтем из обеих частей уравнения.
Этап 5.3.2
Вычтем из .
Этап 5.4
Добавим к обеим частям уравнения.
Этап 5.5
Добавим и .
Этап 5.6
Разложим левую часть уравнения на множители.
Нажмите для увеличения количества этапов...
Этап 5.6.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 5.6.1.1
Вынесем множитель из .
Этап 5.6.1.2
Вынесем множитель из .
Этап 5.6.1.3
Перепишем в виде .
Этап 5.6.1.4
Вынесем множитель из .
Этап 5.6.1.5
Вынесем множитель из .
Этап 5.6.2
Разложим на множители.
Нажмите для увеличения количества этапов...
Этап 5.6.2.1
Разложим на множители, используя метод группировки.
Нажмите для увеличения количества этапов...
Этап 5.6.2.1.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 5.6.2.1.2
Запишем разложение на множители, используя данные целые числа.
Этап 5.6.2.2
Избавимся от ненужных скобок.
Этап 5.7
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 5.8
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.8.1
Приравняем к .
Этап 5.8.2
Добавим к обеим частям уравнения.
Этап 5.9
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.9.1
Приравняем к .
Этап 5.9.2
Вычтем из обеих частей уравнения.
Этап 5.10
Окончательным решением являются все значения, при которых верно.
Этап 6
Перечислим все решения.