Введите задачу...
Конечная математика Примеры
,
Этап 1
Этап 1.1
Уравнение с угловым коэффициентом имеет вид , где — угловой коэффициент, а — точка пересечения с осью y.
Этап 1.2
Вычтем из обеих частей уравнения.
Этап 1.3
Изменим порядок и .
Этап 2
Использование уравнения с угловым коэффициентом, угловой коэффициент: .
Этап 3
Этап 3.1
Уравнение с угловым коэффициентом имеет вид , где — угловой коэффициент, а — точка пересечения с осью y.
Этап 3.2
Вычтем из обеих частей уравнения.
Этап 3.3
Разделим каждый член на и упростим.
Этап 3.3.1
Разделим каждый член на .
Этап 3.3.2
Упростим левую часть.
Этап 3.3.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 3.3.2.2
Разделим на .
Этап 3.3.3
Упростим правую часть.
Этап 3.3.3.1
Упростим каждый член.
Этап 3.3.3.1.1
Разделим на .
Этап 3.3.3.1.2
Деление двух отрицательных значений дает положительное значение.
Этап 3.3.3.1.3
Разделим на .
Этап 3.4
Изменим порядок и .
Этап 4
Использование уравнения с угловым коэффициентом, угловой коэффициент: .
Этап 5
Составим систему уравнений, чтобы найти любые точки пересечения.
Этап 6
Этап 6.1
Вычтем из обеих частей уравнения.
Этап 6.2
Заменим все вхождения на во всех уравнениях.
Этап 6.2.1
Заменим все вхождения в на .
Этап 6.2.2
Упростим левую часть.
Этап 6.2.2.1
Вычтем из .
Этап 6.3
Решим относительно в .
Этап 6.3.1
Перенесем все члены без в правую часть уравнения.
Этап 6.3.1.1
Вычтем из обеих частей уравнения.
Этап 6.3.1.2
Вычтем из .
Этап 6.3.2
Разделим каждый член на и упростим.
Этап 6.3.2.1
Разделим каждый член на .
Этап 6.3.2.2
Упростим левую часть.
Этап 6.3.2.2.1
Сократим общий множитель .
Этап 6.3.2.2.1.1
Сократим общий множитель.
Этап 6.3.2.2.1.2
Разделим на .
Этап 6.3.2.3
Упростим правую часть.
Этап 6.3.2.3.1
Разделим на .
Этап 6.4
Заменим все вхождения на во всех уравнениях.
Этап 6.4.1
Заменим все вхождения в на .
Этап 6.4.2
Упростим правую часть.
Этап 6.4.2.1
Упростим .
Этап 6.4.2.1.1
Умножим на .
Этап 6.4.2.1.2
Вычтем из .
Этап 6.5
Решение данной системы — полный набор упорядоченных пар, представляющих собой допустимые решения.
Этап 7
Поскольку эти прямые имеют разные угловые коэффициенты, они пересекаются в одной точке.
Этап 8