Конечная математика Примеры

Определить поведение (проверка ведущего коэффициента) 3x-5y=-8
Этап 1
Решим уравнение относительно .
Нажмите для увеличения количества этапов...
Этап 1.1
Вычтем из обеих частей уравнения.
Этап 1.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 1.2.1
Разделим каждый член на .
Этап 1.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.2.2.1.1
Сократим общий множитель.
Этап 1.2.2.1.2
Разделим на .
Этап 1.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.2.3.1.1
Деление двух отрицательных значений дает положительное значение.
Этап 1.2.3.1.2
Деление двух отрицательных значений дает положительное значение.
Этап 2
Определим степень функции.
Нажмите для увеличения количества этапов...
Этап 2.1
Определим показатели степеней переменных в каждом члене и сложим их, чтобы определить степень каждого члена.
Этап 2.2
Наибольший показатель степени называется степенью многочлена.
Этап 3
Поскольку степень нечетная, края функции будут указывать противоположные направления.
Нечетные
Этап 4
Определим старший коэффициент.
Нажмите для увеличения количества этапов...
Этап 4.1
Изменим порядок и .
Этап 4.2
Старший член многочлена — это член с наивысшим показателем степени.
Этап 4.3
Старший коэффициент многочлена — это коэффициент его старшего члена.
Этап 5
Поскольку старший коэффициент положителен, график возрастает вправо.
Положительные
Этап 6
Используем степень и знак старшего коэффициента для определения поведения функции.
1. Четный и положительный: поднимается влево и поднимается вправо.
2. Четный и отрицательный: опускается влево и опускается вправо.
3. Нечетный и положительный: опускается влево и поднимается вправо.
4. Нечетный и отрицательный: поднимается влево и опускается вправо
Этап 7
Определим поведение.
Убывает влево и возрастает вправо
Этап 8