Введите задачу...
Математический анализ Примеры
Этап 1
Запишем в виде функции.
Этап 2
Этап 2.1
Перепишем в виде .
Этап 2.2
Развернем , используя метод «первые-внешние-внутренние-последние».
Этап 2.2.1
Применим свойство дистрибутивности.
Этап 2.2.2
Применим свойство дистрибутивности.
Этап 2.2.3
Применим свойство дистрибутивности.
Этап 2.3
Упростим и объединим подобные члены.
Этап 2.3.1
Упростим каждый член.
Этап 2.3.1.1
Умножим на .
Этап 2.3.1.2
Перенесем влево от .
Этап 2.3.1.3
Перепишем в виде .
Этап 2.3.1.4
Перепишем в виде .
Этап 2.3.1.5
Умножим на .
Этап 2.3.2
Вычтем из .
Этап 2.4
Поскольку является константой относительно , производная по равна .
Этап 2.5
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2.6
Продифференцируем.
Этап 2.6.1
По правилу суммы производная по имеет вид .
Этап 2.6.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.6.3
Поскольку является константой относительно , производная по равна .
Этап 2.6.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.6.5
Умножим на .
Этап 2.6.6
Поскольку является константой относительно , производная относительно равна .
Этап 2.6.7
Добавим и .
Этап 2.6.8
По правилу суммы производная по имеет вид .
Этап 2.6.9
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.6.10
Поскольку является константой относительно , производная относительно равна .
Этап 2.6.11
Упростим выражение.
Этап 2.6.11.1
Добавим и .
Этап 2.6.11.2
Умножим на .
Этап 2.7
Упростим.
Этап 2.7.1
Применим свойство дистрибутивности.
Этап 2.7.2
Применим свойство дистрибутивности.
Этап 2.7.3
Применим свойство дистрибутивности.
Этап 2.7.4
Применим свойство дистрибутивности.
Этап 2.7.5
Применим свойство дистрибутивности.
Этап 2.7.6
Объединим термины.
Этап 2.7.6.1
Возведем в степень .
Этап 2.7.6.2
Возведем в степень .
Этап 2.7.6.3
Применим правило степени для объединения показателей.
Этап 2.7.6.4
Добавим и .
Этап 2.7.6.5
Умножим на .
Этап 2.7.6.6
Умножим на .
Этап 2.7.6.7
Умножим на .
Этап 2.7.6.8
Перенесем влево от .
Этап 2.7.6.9
Умножим на .
Этап 2.7.6.10
Умножим на .
Этап 2.7.6.11
Умножим на .
Этап 2.7.6.12
Добавим и .
Этап 2.7.6.13
Добавим и .
Этап 2.7.6.14
Вычтем из .
Этап 2.7.6.15
Умножим на .
Этап 2.7.6.16
Умножим на .
Этап 2.7.6.17
Вычтем из .
Этап 3
Этап 3.1
По правилу суммы производная по имеет вид .
Этап 3.2
Найдем значение .
Этап 3.2.1
Поскольку является константой относительно , производная по равна .
Этап 3.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.2.3
Умножим на .
Этап 3.3
Найдем значение .
Этап 3.3.1
Поскольку является константой относительно , производная по равна .
Этап 3.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3.3
Умножим на .
Этап 3.4
Продифференцируем, используя правило константы.
Этап 3.4.1
Поскольку является константой относительно , производная относительно равна .
Этап 3.4.2
Добавим и .
Этап 4
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Этап 5
Этап 5.1
Найдем первую производную.
Этап 5.1.1
Перепишем в виде .
Этап 5.1.2
Развернем , используя метод «первые-внешние-внутренние-последние».
Этап 5.1.2.1
Применим свойство дистрибутивности.
Этап 5.1.2.2
Применим свойство дистрибутивности.
Этап 5.1.2.3
Применим свойство дистрибутивности.
Этап 5.1.3
Упростим и объединим подобные члены.
Этап 5.1.3.1
Упростим каждый член.
Этап 5.1.3.1.1
Умножим на .
Этап 5.1.3.1.2
Перенесем влево от .
Этап 5.1.3.1.3
Перепишем в виде .
Этап 5.1.3.1.4
Перепишем в виде .
Этап 5.1.3.1.5
Умножим на .
Этап 5.1.3.2
Вычтем из .
Этап 5.1.4
Поскольку является константой относительно , производная по равна .
Этап 5.1.5
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 5.1.6
Продифференцируем.
Этап 5.1.6.1
По правилу суммы производная по имеет вид .
Этап 5.1.6.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 5.1.6.3
Поскольку является константой относительно , производная по равна .
Этап 5.1.6.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 5.1.6.5
Умножим на .
Этап 5.1.6.6
Поскольку является константой относительно , производная относительно равна .
Этап 5.1.6.7
Добавим и .
Этап 5.1.6.8
По правилу суммы производная по имеет вид .
Этап 5.1.6.9
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 5.1.6.10
Поскольку является константой относительно , производная относительно равна .
Этап 5.1.6.11
Упростим выражение.
Этап 5.1.6.11.1
Добавим и .
Этап 5.1.6.11.2
Умножим на .
Этап 5.1.7
Упростим.
Этап 5.1.7.1
Применим свойство дистрибутивности.
Этап 5.1.7.2
Применим свойство дистрибутивности.
Этап 5.1.7.3
Применим свойство дистрибутивности.
Этап 5.1.7.4
Применим свойство дистрибутивности.
Этап 5.1.7.5
Применим свойство дистрибутивности.
Этап 5.1.7.6
Объединим термины.
Этап 5.1.7.6.1
Возведем в степень .
Этап 5.1.7.6.2
Возведем в степень .
Этап 5.1.7.6.3
Применим правило степени для объединения показателей.
Этап 5.1.7.6.4
Добавим и .
Этап 5.1.7.6.5
Умножим на .
Этап 5.1.7.6.6
Умножим на .
Этап 5.1.7.6.7
Умножим на .
Этап 5.1.7.6.8
Перенесем влево от .
Этап 5.1.7.6.9
Умножим на .
Этап 5.1.7.6.10
Умножим на .
Этап 5.1.7.6.11
Умножим на .
Этап 5.1.7.6.12
Добавим и .
Этап 5.1.7.6.13
Добавим и .
Этап 5.1.7.6.14
Вычтем из .
Этап 5.1.7.6.15
Умножим на .
Этап 5.1.7.6.16
Умножим на .
Этап 5.1.7.6.17
Вычтем из .
Этап 5.2
Первая производная по равна .
Этап 6
Этап 6.1
Пусть первая производная равна .
Этап 6.2
Разложим левую часть уравнения на множители.
Этап 6.2.1
Вынесем множитель из .
Этап 6.2.1.1
Вынесем множитель из .
Этап 6.2.1.2
Вынесем множитель из .
Этап 6.2.1.3
Перепишем в виде .
Этап 6.2.1.4
Вынесем множитель из .
Этап 6.2.1.5
Вынесем множитель из .
Этап 6.2.2
Разложим на множители.
Этап 6.2.2.1
Разложим на множители методом группировки
Этап 6.2.2.1.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Этап 6.2.2.1.1.1
Вынесем множитель из .
Этап 6.2.2.1.1.2
Запишем как плюс
Этап 6.2.2.1.1.3
Применим свойство дистрибутивности.
Этап 6.2.2.1.1.4
Умножим на .
Этап 6.2.2.1.2
Вынесем наибольший общий делитель из каждой группы.
Этап 6.2.2.1.2.1
Сгруппируем первые два члена и последние два члена.
Этап 6.2.2.1.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 6.2.2.1.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 6.2.2.2
Избавимся от ненужных скобок.
Этап 6.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 6.4
Приравняем к , затем решим относительно .
Этап 6.4.1
Приравняем к .
Этап 6.4.2
Решим относительно .
Этап 6.4.2.1
Вычтем из обеих частей уравнения.
Этап 6.4.2.2
Разделим каждый член на и упростим.
Этап 6.4.2.2.1
Разделим каждый член на .
Этап 6.4.2.2.2
Упростим левую часть.
Этап 6.4.2.2.2.1
Сократим общий множитель .
Этап 6.4.2.2.2.1.1
Сократим общий множитель.
Этап 6.4.2.2.2.1.2
Разделим на .
Этап 6.4.2.2.3
Упростим правую часть.
Этап 6.4.2.2.3.1
Вынесем знак минуса перед дробью.
Этап 6.5
Приравняем к , затем решим относительно .
Этап 6.5.1
Приравняем к .
Этап 6.5.2
Добавим к обеим частям уравнения.
Этап 6.6
Окончательным решением являются все значения, при которых верно.
Этап 7
Этап 7.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 8
Критические точки, которые необходимо вычислить.
Этап 9
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 10
Этап 10.1
Упростим каждый член.
Этап 10.1.1
Сократим общий множитель .
Этап 10.1.1.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 10.1.1.2
Вынесем множитель из .
Этап 10.1.1.3
Сократим общий множитель.
Этап 10.1.1.4
Перепишем это выражение.
Этап 10.1.2
Умножим на .
Этап 10.2
Добавим и .
Этап 11
— локальный минимум, так как вторая производная положительная. Это называется тестом второй производной.
— локальный минимум
Этап 12
Этап 12.1
Заменим в этом выражении переменную на .
Этап 12.2
Упростим результат.
Этап 12.2.1
Запишем в виде дроби с общим знаменателем.
Этап 12.2.2
Объединим числители над общим знаменателем.
Этап 12.2.3
Добавим и .
Этап 12.2.4
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 12.2.5
Объединим и .
Этап 12.2.6
Объединим числители над общим знаменателем.
Этап 12.2.7
Упростим числитель.
Этап 12.2.7.1
Умножим на .
Этап 12.2.7.2
Вычтем из .
Этап 12.2.8
Вынесем знак минуса перед дробью.
Этап 12.2.9
Применим правило степени для распределения показателей.
Этап 12.2.9.1
Применим правило умножения к .
Этап 12.2.9.2
Применим правило умножения к .
Этап 12.2.10
Умножим на , сложив экспоненты.
Этап 12.2.10.1
Перенесем .
Этап 12.2.10.2
Умножим на .
Этап 12.2.10.2.1
Возведем в степень .
Этап 12.2.10.2.2
Применим правило степени для объединения показателей.
Этап 12.2.10.3
Добавим и .
Этап 12.2.11
Возведем в степень .
Этап 12.2.12
Возведем в степень .
Этап 12.2.13
Возведем в степень .
Этап 12.2.14
Умножим .
Этап 12.2.14.1
Умножим на .
Этап 12.2.14.2
Умножим на .
Этап 12.2.14.3
Умножим на .
Этап 12.2.15
Окончательный ответ: .
Этап 13
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 14
Этап 14.1
Умножим на .
Этап 14.2
Добавим и .
Этап 15
— локальный максимум, так как вторая производная отрицательная. Это называется тестом второй производной.
— локальный максимум
Этап 16
Этап 16.1
Заменим в этом выражении переменную на .
Этап 16.2
Упростим результат.
Этап 16.2.1
Добавим и .
Этап 16.2.2
Умножим на .
Этап 16.2.3
Вычтем из .
Этап 16.2.4
Возведение в любую положительную степень дает .
Этап 16.2.5
Умножим на .
Этап 16.2.6
Окончательный ответ: .
Этап 17
Это локальные экстремумы .
— локальный минимум
— локальный максимум
Этап 18