Математический анализ Примеры

Найти локальный максимум и минимум -(x+1)(x-1)^2
Этап 1
Запишем в виде функции.
Этап 2
Найдем первую производную функции.
Нажмите для увеличения количества этапов...
Этап 2.1
Перепишем в виде .
Этап 2.2
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 2.2.1
Применим свойство дистрибутивности.
Этап 2.2.2
Применим свойство дистрибутивности.
Этап 2.2.3
Применим свойство дистрибутивности.
Этап 2.3
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.3.1.1
Умножим на .
Этап 2.3.1.2
Перенесем влево от .
Этап 2.3.1.3
Перепишем в виде .
Этап 2.3.1.4
Перепишем в виде .
Этап 2.3.1.5
Умножим на .
Этап 2.3.2
Вычтем из .
Этап 2.4
Поскольку является константой относительно , производная по равна .
Этап 2.5
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2.6
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 2.6.1
По правилу суммы производная по имеет вид .
Этап 2.6.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.6.3
Поскольку является константой относительно , производная по равна .
Этап 2.6.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.6.5
Умножим на .
Этап 2.6.6
Поскольку является константой относительно , производная относительно равна .
Этап 2.6.7
Добавим и .
Этап 2.6.8
По правилу суммы производная по имеет вид .
Этап 2.6.9
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.6.10
Поскольку является константой относительно , производная относительно равна .
Этап 2.6.11
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 2.6.11.1
Добавим и .
Этап 2.6.11.2
Умножим на .
Этап 2.7
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.7.1
Применим свойство дистрибутивности.
Этап 2.7.2
Применим свойство дистрибутивности.
Этап 2.7.3
Применим свойство дистрибутивности.
Этап 2.7.4
Применим свойство дистрибутивности.
Этап 2.7.5
Применим свойство дистрибутивности.
Этап 2.7.6
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 2.7.6.1
Возведем в степень .
Этап 2.7.6.2
Возведем в степень .
Этап 2.7.6.3
Применим правило степени для объединения показателей.
Этап 2.7.6.4
Добавим и .
Этап 2.7.6.5
Умножим на .
Этап 2.7.6.6
Умножим на .
Этап 2.7.6.7
Умножим на .
Этап 2.7.6.8
Перенесем влево от .
Этап 2.7.6.9
Умножим на .
Этап 2.7.6.10
Умножим на .
Этап 2.7.6.11
Умножим на .
Этап 2.7.6.12
Добавим и .
Этап 2.7.6.13
Добавим и .
Этап 2.7.6.14
Вычтем из .
Этап 2.7.6.15
Умножим на .
Этап 2.7.6.16
Умножим на .
Этап 2.7.6.17
Вычтем из .
Этап 3
Найдем вторую производную функции.
Нажмите для увеличения количества этапов...
Этап 3.1
По правилу суммы производная по имеет вид .
Этап 3.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 3.2.1
Поскольку является константой относительно , производная по равна .
Этап 3.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.2.3
Умножим на .
Этап 3.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 3.3.1
Поскольку является константой относительно , производная по равна .
Этап 3.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3.3
Умножим на .
Этап 3.4
Продифференцируем, используя правило константы.
Нажмите для увеличения количества этапов...
Этап 3.4.1
Поскольку является константой относительно , производная относительно равна .
Этап 3.4.2
Добавим и .
Этап 4
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Этап 5
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 5.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 5.1.1
Перепишем в виде .
Этап 5.1.2
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 5.1.2.1
Применим свойство дистрибутивности.
Этап 5.1.2.2
Применим свойство дистрибутивности.
Этап 5.1.2.3
Применим свойство дистрибутивности.
Этап 5.1.3
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 5.1.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 5.1.3.1.1
Умножим на .
Этап 5.1.3.1.2
Перенесем влево от .
Этап 5.1.3.1.3
Перепишем в виде .
Этап 5.1.3.1.4
Перепишем в виде .
Этап 5.1.3.1.5
Умножим на .
Этап 5.1.3.2
Вычтем из .
Этап 5.1.4
Поскольку является константой относительно , производная по равна .
Этап 5.1.5
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 5.1.6
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 5.1.6.1
По правилу суммы производная по имеет вид .
Этап 5.1.6.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 5.1.6.3
Поскольку является константой относительно , производная по равна .
Этап 5.1.6.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 5.1.6.5
Умножим на .
Этап 5.1.6.6
Поскольку является константой относительно , производная относительно равна .
Этап 5.1.6.7
Добавим и .
Этап 5.1.6.8
По правилу суммы производная по имеет вид .
Этап 5.1.6.9
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 5.1.6.10
Поскольку является константой относительно , производная относительно равна .
Этап 5.1.6.11
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 5.1.6.11.1
Добавим и .
Этап 5.1.6.11.2
Умножим на .
Этап 5.1.7
Упростим.
Нажмите для увеличения количества этапов...
Этап 5.1.7.1
Применим свойство дистрибутивности.
Этап 5.1.7.2
Применим свойство дистрибутивности.
Этап 5.1.7.3
Применим свойство дистрибутивности.
Этап 5.1.7.4
Применим свойство дистрибутивности.
Этап 5.1.7.5
Применим свойство дистрибутивности.
Этап 5.1.7.6
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 5.1.7.6.1
Возведем в степень .
Этап 5.1.7.6.2
Возведем в степень .
Этап 5.1.7.6.3
Применим правило степени для объединения показателей.
Этап 5.1.7.6.4
Добавим и .
Этап 5.1.7.6.5
Умножим на .
Этап 5.1.7.6.6
Умножим на .
Этап 5.1.7.6.7
Умножим на .
Этап 5.1.7.6.8
Перенесем влево от .
Этап 5.1.7.6.9
Умножим на .
Этап 5.1.7.6.10
Умножим на .
Этап 5.1.7.6.11
Умножим на .
Этап 5.1.7.6.12
Добавим и .
Этап 5.1.7.6.13
Добавим и .
Этап 5.1.7.6.14
Вычтем из .
Этап 5.1.7.6.15
Умножим на .
Этап 5.1.7.6.16
Умножим на .
Этап 5.1.7.6.17
Вычтем из .
Этап 5.2
Первая производная по равна .
Этап 6
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 6.1
Пусть первая производная равна .
Этап 6.2
Разложим левую часть уравнения на множители.
Нажмите для увеличения количества этапов...
Этап 6.2.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 6.2.1.1
Вынесем множитель из .
Этап 6.2.1.2
Вынесем множитель из .
Этап 6.2.1.3
Перепишем в виде .
Этап 6.2.1.4
Вынесем множитель из .
Этап 6.2.1.5
Вынесем множитель из .
Этап 6.2.2
Разложим на множители.
Нажмите для увеличения количества этапов...
Этап 6.2.2.1
Разложим на множители методом группировки
Нажмите для увеличения количества этапов...
Этап 6.2.2.1.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Нажмите для увеличения количества этапов...
Этап 6.2.2.1.1.1
Вынесем множитель из .
Этап 6.2.2.1.1.2
Запишем как плюс
Этап 6.2.2.1.1.3
Применим свойство дистрибутивности.
Этап 6.2.2.1.1.4
Умножим на .
Этап 6.2.2.1.2
Вынесем наибольший общий делитель из каждой группы.
Нажмите для увеличения количества этапов...
Этап 6.2.2.1.2.1
Сгруппируем первые два члена и последние два члена.
Этап 6.2.2.1.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 6.2.2.1.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 6.2.2.2
Избавимся от ненужных скобок.
Этап 6.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 6.4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.4.1
Приравняем к .
Этап 6.4.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.4.2.1
Вычтем из обеих частей уравнения.
Этап 6.4.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 6.4.2.2.1
Разделим каждый член на .
Этап 6.4.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 6.4.2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.4.2.2.2.1.1
Сократим общий множитель.
Этап 6.4.2.2.2.1.2
Разделим на .
Этап 6.4.2.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 6.4.2.2.3.1
Вынесем знак минуса перед дробью.
Этап 6.5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.5.1
Приравняем к .
Этап 6.5.2
Добавим к обеим частям уравнения.
Этап 6.6
Окончательным решением являются все значения, при которых верно.
Этап 7
Найдем значения, при которых производная не определена.
Нажмите для увеличения количества этапов...
Этап 7.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 8
Критические точки, которые необходимо вычислить.
Этап 9
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 10
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 10.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 10.1.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 10.1.1.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 10.1.1.2
Вынесем множитель из .
Этап 10.1.1.3
Сократим общий множитель.
Этап 10.1.1.4
Перепишем это выражение.
Этап 10.1.2
Умножим на .
Этап 10.2
Добавим и .
Этап 11
 — локальный минимум, так как вторая производная положительная. Это называется тестом второй производной.
 — локальный минимум
Этап 12
Найдем значение y, если .
Нажмите для увеличения количества этапов...
Этап 12.1
Заменим в этом выражении переменную на .
Этап 12.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 12.2.1
Запишем в виде дроби с общим знаменателем.
Этап 12.2.2
Объединим числители над общим знаменателем.
Этап 12.2.3
Добавим и .
Этап 12.2.4
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 12.2.5
Объединим и .
Этап 12.2.6
Объединим числители над общим знаменателем.
Этап 12.2.7
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 12.2.7.1
Умножим на .
Этап 12.2.7.2
Вычтем из .
Этап 12.2.8
Вынесем знак минуса перед дробью.
Этап 12.2.9
Применим правило степени для распределения показателей.
Нажмите для увеличения количества этапов...
Этап 12.2.9.1
Применим правило умножения к .
Этап 12.2.9.2
Применим правило умножения к .
Этап 12.2.10
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 12.2.10.1
Перенесем .
Этап 12.2.10.2
Умножим на .
Нажмите для увеличения количества этапов...
Этап 12.2.10.2.1
Возведем в степень .
Этап 12.2.10.2.2
Применим правило степени для объединения показателей.
Этап 12.2.10.3
Добавим и .
Этап 12.2.11
Возведем в степень .
Этап 12.2.12
Возведем в степень .
Этап 12.2.13
Возведем в степень .
Этап 12.2.14
Умножим .
Нажмите для увеличения количества этапов...
Этап 12.2.14.1
Умножим на .
Этап 12.2.14.2
Умножим на .
Этап 12.2.14.3
Умножим на .
Этап 12.2.15
Окончательный ответ: .
Этап 13
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 14
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 14.1
Умножим на .
Этап 14.2
Добавим и .
Этап 15
 — локальный максимум, так как вторая производная отрицательная. Это называется тестом второй производной.
 — локальный максимум
Этап 16
Найдем значение y, если .
Нажмите для увеличения количества этапов...
Этап 16.1
Заменим в этом выражении переменную на .
Этап 16.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 16.2.1
Добавим и .
Этап 16.2.2
Умножим на .
Этап 16.2.3
Вычтем из .
Этап 16.2.4
Возведение в любую положительную степень дает .
Этап 16.2.5
Умножим на .
Этап 16.2.6
Окончательный ответ: .
Этап 17
Это локальные экстремумы .
 — локальный минимум
 — локальный максимум
Этап 18