Введите задачу...
Математический анализ Примеры
Этап 1
Запишем в виде функции.
Этап 2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 3
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 4
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Этап 5
Ввиду отсутствия значения , при котором первая производная равна , локальные экстремумы отсутствуют.
Нет локальных экстремумов
Этап 6
Нет локальных экстремумов
Этап 7