Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Пусть . Найдем .
Этап 1.1.1
Дифференцируем .
Этап 1.1.2
Продифференцируем.
Этап 1.1.2.1
По правилу суммы производная по имеет вид .
Этап 1.1.2.2
Поскольку является константой относительно , производная относительно равна .
Этап 1.1.3
Найдем значение .
Этап 1.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.3.3
Умножим на .
Этап 1.1.4
Вычтем из .
Этап 1.2
Подставим нижнее предельное значение вместо в .
Этап 1.3
Вычтем из .
Этап 1.4
Подставим верхнее предельное значение вместо в .
Этап 1.5
Упростим.
Этап 1.5.1
Умножим на .
Этап 1.5.2
Вычтем из .
Этап 1.6
Значения, найденные для и , будут использованы для вычисления данного определенного интеграла.
Этап 1.7
Переформулируем задачу, используя , и новые пределы интегрирования.
Этап 2
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 3
По правилу степени интеграл по имеет вид .
Этап 4
Объединим и .
Этап 5
Этап 5.1
Найдем значение в и в .
Этап 5.2
Упростим.
Этап 5.2.1
Возведение в любую положительную степень дает .
Этап 5.2.2
Сократим общий множитель и .
Этап 5.2.2.1
Вынесем множитель из .
Этап 5.2.2.2
Сократим общие множители.
Этап 5.2.2.2.1
Вынесем множитель из .
Этап 5.2.2.2.2
Сократим общий множитель.
Этап 5.2.2.2.3
Перепишем это выражение.
Этап 5.2.2.2.4
Разделим на .
Этап 5.2.3
Единица в любой степени равна единице.
Этап 5.2.4
Вычтем из .
Этап 5.2.5
Умножим на .
Этап 5.2.6
Умножим на .
Этап 6
Результат можно представить в различном виде.
Точная форма:
Десятичная форма:
Этап 7