Математический анализ Примеры

Вычислим интеграл интеграл 5x^4(3+x^5)^4 в пределах от 0 до 1 по x
Этап 1
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 2
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 2.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 2.1.1
Дифференцируем .
Этап 2.1.2
По правилу суммы производная по имеет вид .
Этап 2.1.3
Поскольку является константой относительно , производная относительно равна .
Этап 2.1.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.5
Добавим и .
Этап 2.2
Подставим нижнее предельное значение вместо в .
Этап 2.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Возведение в любую положительную степень дает .
Этап 2.3.2
Добавим и .
Этап 2.4
Подставим верхнее предельное значение вместо в .
Этап 2.5
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.5.1
Единица в любой степени равна единице.
Этап 2.5.2
Добавим и .
Этап 2.6
Значения, найденные для и , будут использованы для вычисления данного определенного интеграла.
Этап 2.7
Переформулируем задачу, используя , и новые пределы интегрирования.
Этап 3
Объединим и .
Этап 4
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 5
Упростим.
Нажмите для увеличения количества этапов...
Этап 5.1
Объединим и .
Этап 5.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.2.1
Сократим общий множитель.
Этап 5.2.2
Перепишем это выражение.
Этап 5.3
Умножим на .
Этап 6
По правилу степени интеграл по имеет вид .
Этап 7
Подставим и упростим.
Нажмите для увеличения количества этапов...
Этап 7.1
Найдем значение в и в .
Этап 7.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 7.2.1
Возведем в степень .
Этап 7.2.2
Объединим и .
Этап 7.2.3
Возведем в степень .
Этап 7.2.4
Умножим на .
Этап 7.2.5
Объединим и .
Этап 7.2.6
Вынесем знак минуса перед дробью.
Этап 7.2.7
Объединим числители над общим знаменателем.
Этап 7.2.8
Вычтем из .
Этап 8
Результат можно представить в различном виде.
Точная форма:
Десятичная форма:
Форма смешанных чисел:
Этап 9